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Abstract: 

Breast cancer (BC) manifests as a diverse group of malignancies and presents as a wide array of tumors with distinct morphological, 
biological, and clinical characteristics. Molecular classification of BC serves as the basis for current precision-oriented therapeutic 
strategies. Upcoming therapeutic strategies will emphasize personalized medicine and tailoring treatments according to each 
patient's specific needs. These approaches will involve modulating the therapy intensity based on the biological characteristics of 
tumours and early predictive indicators, allowing for more precise and adaptable care in oncology. Additionally, there remains an 
unfulfilled requirement for the creation of new medications to treat breast cancer in its early stages, as well as in advanced cases. This 
review article presents an extensive examination of breast cancer, delving into its prevalence, contributing factors, molecular and 
cellular features and therapeutic interventions. 
 

Keywords: Breast cancer, classification, heterogeneity, molecular mechanisms, ductal carcinoma in situ, invasive ductal carcinoma 

 
Background: 

In recent decades, the incidence of breast cancer has increased, 
cementing its position as the most frequently identified cancer 
type worldwide [1]. Million new cases of this disease were 
reported in 2008; nearly 60% of these deaths and nearly half of 
all cases occurred in lower-income nations [2]. Globally, the 
estimated 5-year survival rate for breast cancer (BC) varies 
significantly between high- and low-income countries; in the 
former, it is less than 40%, whereas in the latter, it is 80% [3]. 
Low- and middle-income nations have limited infrastructure 
and resources, making it difficult to achieve the objective of 
enhancing results for breast cancer using early identification, 
treatment and detection [4]. The lifetime of BC in an American 
female is 1 out of 8 or 12.5 % [5]. Cancer risk assessment models 
categorize women's likelihood of developing cancer by 
evaluating established and measurable risk factors, including 
hormonal, environmental, personal and genetic elements, which 
provide tailored screening recommendations based on 
individual risk profiles [6]. Although magnetic resonance 
imaging and ultrasound have emerged as valuable diagnostic 
tools, mammography remains the primary method for breast 
cancer screening and diagnosis [7]. Unlike other cancers, breast 
cancer has distinct risk factors, and genetic susceptibility plays a 
key role in its growth [8]. Mutations in BRCA1 or BRCA2 are 
important benefactors to BC [9]. Breast tumors may originate in 
several regions of the breast including ducts, lobules and 
interstitial tissue [10]. Among the extensive array of 
heterogeneous breast carcinomas, several forms of breast cancer 
are classified according to their invasiveness in relation to the 
main tumor locations [11]. This establishes the foundation for 
further morphological characterization and breast cancer 
categorization to predict therapeutic outcomes [12]. Therefore, 
this review provides a thorough analysis of the key biological 
aspects of BC, including etiological factors, categorizations, 
features at the cellular and molecular levels and 
multidisciplinary approaches to BC treatment. 
 
Breast cancer risk-prediction model – BOADICEA: 
Breast cancer risk-prediction models typically categorize women 
into different risk levels based on various factors. These 
categories generally include the low, intermediate and high-risk 
categories [13]. BOADICEA is a predictive algorithm for 
assessing breast cancer risk [14]. This innovative approach to 
predict breast cancer risk is a significant step forward by 

combining various risk factors, including lifestyle, reproductive, 
hormonal and genetic factors. By utilizing this holistic method, 
the model enables a more precise and individualized risk 
evaluation. The risk of developing BC is substantially affected 
through intrinsic hormones and reproductive-related factors [15, 

16]. BC risk in postmenopausal females is significantly 
influenced by internal hormones, with estrogens and androgens 
playing crucial roles [17]. Reproductive factors have also been 
implicated, potentially through their ability to modulate 
hormone exposure across a woman's lifespan [18]. Recent 
advancements in risk prediction models have demonstrated the 
potential benefits of incorporating hormone measurements, 
leading to improved identification of women at great risk of BC 

[19]. 
 
Histology of breast carcinoma: 

The majority of BC originates in the lobules or ducts of the 
breast. At times, malignant growth extends into the dermal layer 
or thoracic wall structures such as the chest muscles. 
Additionally, cancer cells can modify their surrounding 
environment, creating conditions that support their proliferation 
and spread.  
 
Ductal carcinoma in situ (DCIS): 

DCIS is a non-invasive BC marked by the proliferation of 
atypical epithelial cells within the breast milk ducts, remaining 
restricted by the basement membrane without invading adjacent 
tissues [20]. It is fundamentally a precancerous lesion regarded 
as a precursor to invasive BC, frequently identified via 
mammograms due to calcification patterns and categorized 
according to histological characteristics, such as grade (low, 
intermediate, high) and architectural configuration (solid, 
cribriform, papillary, micropapillary) [21]. DCIS is classified 
according to the morphology of cancer cells, encompassing 
nuclear dimensions, configuration and mitotic frequency, with 
low-grade cells resembling normal cells more closely, whereas 
high-grade cells have more aggressive characteristics. The 
hallmark of DCIS is that the atypical cells remain entirely 
confined inside the ductal structures without infiltrating the 
adjacent breast tissue [22]. The basement membrane, which 
delineates the ductal epithelium from the adjacent tissue, 
remains preserved in DCIS. Under microscopic examination, 
DCIS shows substantial proliferation of epithelial cells inside the 
ducts, frequently appearing congested and disordered in 
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contrast to normal breast tissue [23]. The histological 
characteristics of DCIS, especially the grade and size of the 
lesion, profoundly affect the treatment choices. High-grade DCIS 
exhibiting specific architectural patterns may provide an 
elevated risk to invasive BC, warranting enhanced surveillance 
and may be a more aggressive intervention [24]. 
 
Lobular carcinoma in situ (LCIS): 
LCIS is a benign condition depicted by the proliferation of 
atypical cells within the breast lobules, signifying an intensified 
risk of invasive BC. However, it is not classified as cancer; it 
typically necessitates vigilant observation and enhanced 
screening owing to this heightened risk [25]. Following the 
diagnosis of classic LCIS, the risk of invasive carcinoma is 
roughly 9-10 instances greater than that in general human beings 
[26]. This condition is not identifiable through visual 
examination and is typically found incidentally in breast 
samples or biopsies conducted for other reasons [27]. Under 
microscopic examination, LCIS generally maintains its 
fundamental structure and appears as lobules. The enlarged 
lobules were filled with a non-cohesive pattern of mid-range 
cells, characterized by a largely uniform population of round, 
normochromic nuclei. Intracellular mucin droplets are 
commonly observed and occasionally accompanied by signet 
ring nuclei [28].  
 
Invasive ductal carcinoma (IDC): 
IDC is the predominant type of BC, approximately estimated 
eighty percentages of all BC cases [29]. IDC cancer cells penetrate 
through the walls of the milk ducts and infiltrate the adjacent 
breast tissue [30]. IDC frequently occurs alongside DCIS and this 
combination (IDC + DCIS) correlates with improved overall 
survival compared to IDC alone. The occurrence of DCIS in 
patients with IDC correlates with advantageous clinical 
attributes, including reduced T/N stage, low/intermediate 
grade and progesterone receptor (PR)/estrogen receptor (ER) 
positivity. This survival advantage is restricted to individuals 
with invasive tumors < 4 cm or those with node-negative disease 
[31]. Furthermore, understanding the molecular distinctions 
between DCIS and IDC, together with the influence of matrix 
stiffness on cancer progression, may facilitate the development 
of more focused treatments and enhance patient outcomes [32, 

33]. 
 
Invasive lobular carcinoma (ILC): 
ILC is the 2nd major invasive mammary cancer that differs 
physiologically referred to as the invasive lobular type [34]. ILC 
tumor cells show a typical development pattern with single-file 
stroma invasion. They are usually spherical, tiny, no cohesive 
and rather homogenous. Certain cyto-architectural features can 
be used to diagnose ILC [35]. The hallmark cyto-architectural 
characteristics of ILC are expressed by the classic type of ILC. 
These characteristics typically include the presence of uniform, 
small tumor cells scattered individually throughout the stroma, 
creating patterns and lobules surrounding the cells in a circular 
(targetoid) arrangement [36]. It is typical to observe foci of 

stromal elastosis surrounding veins and ducts with varying 
lymphocytic infiltrates. This variation does not have glandular 
differentiation. ILC seems to be on the rise, especially in 
postmenopausal women and hormone replacement therapy may 
be somewhat to blame for this development [37]. ILC is 
frequently associated with molecular changes that lead to the 
disappearance of heterozygosity and methylation, with 
mutations that inactivate E-cadherin, particularly the 
pleomorphic subtypes [38].  
 
Uncommon breast malignancies - clinical and pathological 
features: 
Uncommon breast malignancies exhibit diverse clinical and 
pathological features that distinguish them from more common 
types such as invasive ductal and lobular carcinomas. 
Metaplastic breast carcinoma (MBC) is an uncommon BC, 
distinguished by the conjunction of carcinoma and non-
epithelial elements [39].  
 
Papillary thyroid carcinoma (PTC): 
PTC is the utmost known type of thyroid cancer and an 
endocrine malignancy [40-42]. These vicious distinct include 
hobnail, tall cell, and columnar cell variants, which may lead to 
metastases, recurrence, and death in 10-15% of patients [43]. The 
different PTC variants exhibited distinct molecular profiles. The 
follicular variant of PTC shows a higher prevalence of ras 
mutations (43%) than non-follicular variants (0%), whereas 
ret/PTC redisposition is well known in non-follicular variants 
(28% vs. 3%) [44]. BRAF p.V600E mutation is the most common 
mutation in PTC, including the hobnail variant [45]. 
Additionally, microRNAs, such as let-7a, play a role in PTC 
progression by targeting genes such as AKT2 [46]. Recent 
genomic studies have expanded our understanding of PTC, 
identifying new driver alterations (EIF1AX, CHEK2, and 
PPM1D) and distinct gene combinations [47]. These findings 
have diminished the proportion of PTC occurrences with 
unspecified oncogenic forms. Furthermore, DNA methylation 
analysis revealed associations between specific methylation 
patterns and lymph node metastasis in PTC, with genes such as 
NDRG4, FOXO3, ZEB2, and CDK6 showing differential 
methylation [48]. These molecular insights provide a basis for 
reclassifying thyroid cancers. 
 
Metaplastic breast carcinoma (MBC): 
MBC is an uncommon and aggressive subdivision of invasive 
mammary carcinoma, distinguished by the distinction of 
epithelium neoplastic into mesenchymal-looking elements 
and/or squamous cells [49]. It exhibits poor outcomes and 
suboptimal responses to systemic chemotherapy compared with 
standard invasive ductal carcinomas [50]. MBC is typically 
triple-negative and deficient in the expression of HER2, 
progesterone receptor (PR) and the estrogen receptor (ER) [51, 

52]. MBC often presents with imaging features that are less 
suggestive of malignancy than invasive ductal carcinoma. MBC 
masses are more likely to be oval shaped with circumscribed 
margins rather than irregular with spiculated margins [53]. 
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Sonographically, MBC frequently appears as a dark tissue mass 
due to its complex echogenicity and posterior enhancement [54]. 
These benign-appearing features can complicate the diagnosis 
and may lead to misclassification [55,56]. The unique histological 
and molecular characteristics of MBC contribute to its aggressive 
behavior and poor prognosis. Recent studies have identified 
potential therapeutic targets such as the PI3K/mTOR pathway 
and TRIM24 [57-59]. The development of mouse models such as 
the Ccn6fl/fl; MMTV-Cre model provides valuable tools for 
studying MBC pathogenesis and testing new treatment 
strategies [60]. Given the rarity of MBC, further research is 
needed to optimize diagnosis and treatment approaches for this 
challenging breast cancer subtype. 
 
Apocrine carcinoma: 

Apocrine carcinoma is a type of BC characterized by distinct 
histochemical, immunological, morphological and molecular 
genetic features [61]. It typically presents as a painless, firm, or 
cystic nodule, with the axilla being the most common site, 
although it can also occur in various other locations [62]. The 
determination of apocrine malignancy requires a combination of 
morphology in over ninety percent of tumor cells and a specific 
immuno-histo-chemical profile [63]. There are contradictions in 
the literature regarding the prognosis and origin of apocrine 
carcinomas. While one study found a slightly longer median 
survival for apocrine carcinoma patients than for those with 
nonspecific duct carcinomas, the ultimate outcome was identical 
[64]. Additionally, the iron reaction test used to identify true 
apocrine glands was negative in all cases, suggesting that 
resemblance to apocrine glands may be purely morphological. 
However, recent molecular classifications have identified subsets 
of breast tumors with high androgen receptor expression, 
including "luminal androgen receptor (LAR) tumors" and 
"molecular apocrine tumors" (MATs), which may have 
implications for targeted therapies [63]. Apocrine carcinoma 
remains a challenging diagnosis because of the subjectivity of 
histopathological criteria and lack of specific biomarkers [65]. 
Treatment options include wide local excision with 
consideration for lymph node dissection in cases of confirmed 
metastases or aggressive tumors [66]. Although traditionally 
resistant to chemotherapy and radiation, recent research 
suggests that drug treatments for breast cancer, including anti-
HER2 and hormone therapies, may be effective for some 
apocrine carcinomas [67]. Further studies are required to 
improve our understanding of this rare cancer and develop 
standardized treatment protocols [68]. 
 
Adenoid cystic carcinoma (ACC): 
ACC is a tumor that affects the salivary glands and may be 
found at sites such as the lacrimal glands, upper respiratory tract 
and skin [69, 70]. It is characterized by slow growth and distant 
metastasis, often leading to poor long-term prognosis [71]. ACC 
can arise in unusual locations, including the larynx, prostate and 
external auditory canal, making diagnosis challenging [72]. ACC 
exhibits diverse clinical behaviors, depending on its location. 
Although salivary gland ACCs are generally aggressive, 

cutaneous ACCs may have a more indolent course [73]. 
However, the histological and immune-cytochemical features of 
ACCs from different sites appear identical, suggesting a uniform 
pathological entity [74]. Another intriguing aspect is the 
potential for dedifferentiation in ACC, which is associated with 
an accelerated clinical course and may involve modifications in 
the p53 gene. ACC remains a poorly understood malignancy, 
with limited treatment options. Standard therapy includes 
surgery and radiation, but the propensity for distant metastases 
limits survival [75]. Novel approaches, such as targeted 
therapies like anlotinib, show promise in advanced cases [76]. 
Additionally, high PSMA expressions in ACC tumors suggest 
that 68Ga-PSMA PET-CT could be a valuable imaging tool for 
this malignancy [77]. Further research on the molecular 
mechanisms of driving ACC is crucial for developing more 
effective treatments and improving patient outcomes. 
 
Breast carcinomas with endocrine differentiation: 
These tumors are typically hormone receptor-positive and 
express ER and/or PR, making them candidates for endocrine 
therapy [78, 79]. However, some endocrine-differentiated breast 
cancers may lack ER and PR expression while still expressing the 
androgen receptor (AR), as observed in apocrine carcinomas [80, 

81]. Interestingly, apocrine carcinomas, which are ER-/PR-/AR+ 
invasive ductal carcinomas, often show different immune-histo-
chemical profiles than other breast cancer subtypes. For instance, 
although TRPS1 is typically a sensitive marker for invasive 
breast carcinoma, it is frequently negative in apocrine 
carcinomas. In contrast, GATA3 remains positive in these 
tumors, regardless of HER2 status [82]. This distinction is critical 
for diagnosis and classification of BC with endocrine 
differentiation. Breast carcinomas with endocrine differentiation 
encompass a spectrum of tumors with varying hormone receptor 
profiles. Although most are hormone receptor-positive and 
responsive to endocrine therapy, some subtypes, such as 
apocrine carcinomas, may require different treatment 
approaches. Understanding the molecular and immune-
histochemical characteristics of these tumors is crucial for their 
proper diagnosis, classification and treatment selection [83, 84]. 
 
Phyllodes tumors (PT): 
PT is biphasic tumors consisting of epithelial and stromal 
components, with the ability to recur and metastasize [85]. 
Interestingly, although PTs are typically benign, both stromal 
and epithelial components can progress to malignancy [86]. In 
rare cases, carcinoma may develop within a PT with the 
potential for lymph node metastasis [87]. The differential 
diagnosis between PT and fibroadenoma remains challenging as 
it exhibits a continuum of pathological features [88]. Molecular 
studies have revealed that genetic changes are the most 
consistent finding in comparative genomic hybridization [89]. 
The accurate diagnosis and classification of PTs are crucial for 
appropriate clinical management. While histological assessment 
remains the primary method for diagnosis, molecular studies 
and immune-histochemical markers may provide additional 
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insights into tumor behavior and potential therapeutic targets 
[90].  
 
Primary breast lymphoma (PBL): 
PBL predominantly affects older women [91]. PBL subdivisions, 
such as “anaplastic large-cell lymphoma (ALCL)”, have also 
been reported, particularly in association with breast implants 
[92] although B-cell lymphomas are more common overall, T-cell 
lymphomas have been frequently reported in cases associated 
with breast prostheses [93]. Additionally, a subgroup of bilateral 
breast lymphomas has been identified in young women, 
particularly during pregnancy or the postpartum period [94]. 
The mutational profile of PBL involves genes in the NF-κB 
signaling pathway, with PIM1 mutations being notably frequent 
[95]. The diagnosis of PBL can be challenging owing to its 
nonspecific imaging features, which often overlap with those of 
primary breast carcinoma [96]. Treatment typically involves a 
combination of chemotherapy, immunotherapy and 
radiotherapy with surgery playing a less significant role than 
breast cancer management [97]. The prognosis for PBL is 
generally favorable, with a five-year likelihood of survival of 
about 76% in non-Hodgkin lymphoma cases [98].  
 
Breast sarcoma: 
Rare and diverse primary breast sarcomas are about one percent 
of all BC [99]. Most studies on this uncommon malignancy are 
retrospective case studies and individual accounts, making 
clinic-pathological analysis difficult [100]. Complete excision 
with clear margins is recommended for tumors that are < 5 cm in 
diameter. Preoperative chemotherapy may enhance the margins 
of bigger tumors [101]. Tumors > 5 cm or those with positive 
surgical margins require radiation [102]. Despite its modest risk, 
breast cancer radiation causes angiosarcoma [103]. Two-thirds of 
breast sarcoma patients die [104]. Smaller tumors at presentation 
increase survival [105]. Patients with lymphangiosarcoma and 
other sarcomas have a thirty percent likelihood of survival after 
treatment [106].  

 
Breast cancer staging: 
The “American Joint Committee on Cancer (AJCC) 8th edition” 
includes two distinct staging tables for BC: one established on 
anatomical basis and the other on prognostic factors [107,108]. 
The TNM classification system, which delineates the anatomic 
spread of cancer, serves as the foundation for establishing the 
anatomic stage. Anatomical staging encompasses the assessment 
of three crucial elements: the “dimensions of the primary tumor 
(T), condition of the lymph nodes (N) and existence of distant 
metastases (M)” [109]. This evaluation was performed using 
both clinical and pathological methods. The National 
Comprehensive Cancer Network (NCCN) recommends a series 
of steps to determine anatomic stage [109]. These include 
conducting a thorough “history and physical examination, 
performing bilateral mammography with ultrasound” when 
indicated, analysing pathology results and evaluating hormone 
receptor status [109]. The 8th edition of the AJCC staging system 
encompasses four distinct categories within the anatomic TNM 

classification. Among these, the first category is known as 
clinical staging, which is indicated by the prefix "c." This 
classification relies on the information gathered through clinical 
examinations, diagnostic imaging procedures and samples 
collected via core biopsy or aspiration techniques before any 
treatment is administered. Pathologic staging, indicated by the 
prefix "p," represents the second category and is derived from 
the analysis of surgical specimens, which encompasses those 
obtained through sentinel lymph node biopsy (SLNB). The 
prefix "yp" denotes the third classification, post-therapy staging, 
which is applicable to individuals who have undergone 
neoadjuvant treatment including chemotherapy (NAC), 
radiation, or hormonal therapy. The final classification, 
restaging, was employed when a tumor reappeared. 
Quantitative classification is the foundation of anatomic staging 
systems. This system categorizes primary tumors from Tis to T4, 
assesses the regional lymph node status from N0 to N3, and 
identifies distant metastases as either M0 or M1. By integrating 
these individual classifications, the overall anatomic stage was 
determined, spanning from stage 0 to stage IV [110]. 
 
Genetic predisposition in BC:  
Almost 10% of BC patients have genetic vulnerability associated 
with germline mutations. BRCA1/2 mutations play a significant 
part in the genetic vulnerability of BC. Seventy percent of 
individuals with BRCA1/2 mutations have a high chance of 
developing BC at 80 years of age [111]. Several mutations in 
BRCA1 can cause splicing mistakes during put-up-
transcriptional mRNA amendment, culminating in exon 11 
deletions. The companion and localizer of BRCA2, PALB2, is 
frequently reflected as an excessive BC-susceptible gene in 
conjunction with BRCA1/2. PALB2 is currently recognized as 
being essential in BC prognostic landscapes and has obtained a 
decent function in BC predisposition panel tests. TP53 is 
normally modified in cancer. Nearly 30% of breast tumors 
contain a TP53 mutation, which varies in frequency and 
spectrum according to the subtype and race element [112]. The 
ATM gene, which is not repressed, is crucial for genomic balance 
[113]. It is activated via double-stranded DNA breaks during the 
duration of the DNA harm reaction (DDR) [114]. Mutations in 
ATM are responsible for a rare autosomal recessive disorder 
known as ataxia-telangiectasia (A-T) [115]. It is exemplified by 
immunodeficiency, susceptibility to ionizing radiation, neuro-
degeneration and an increased likelihood of BC. Individuals 
with BC who received radiation treatment and possessed 
mutated ATM experienced secondary malignancies earlier than 
those who did not undergo radiation therapy and did not have 
mutated ATM. [116, 117]. CHEK2 encodes protein checkpoint 
kinase 2, which is a regulator of DNA repair that maintains 
genomic stability. The likelihood of BC is doubled or tripled by 
protein-truncating mutant CHEK2 [118]. An STK11 mutation 
reduces the capacity of tumor cells to spark off AMP kinase, 
resulting in a higher power strain [119]. Moreover, STK11 has an 
unfavorable impact on the mTOR cascade, which may result in 
aberrant mTOR signaling. PJS intestinal polyps may also display 
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increased mTOR signaling [120]. The lack of heterozygosity in 
STK11 causes breast cancer, metastasis and poor diagnosis [121]. 
 
Consequences of epigenetics: 

Genetic and epigenetic abnormalities in BC progression sooner 
or later contribute to the formation of neoplastic cells (Figure 1) 
[122]. In oncology, there are multifactorial regulatory 
mechanisms that force primary tumorigenesis, invasion, or even 
the application of immune reactions in the tumor environment 
[123-125].   
 

 
Figure 1: Epigenetics of breast cancer 
 
DNA methylation:  
This is an intrinsic technique caused by an enzyme that attaches 
CH3 group to either cytosine or adenine [126]. TNBC, the most 
severe form of breast cancer, exhibits heightened aggressiveness 
compared to other subtypes [127]. The development of TNBC 
tumors is thought to be influenced by abnormal epigenetic 
mechanisms, particularly DNA hyper methylation [128]. This 
process is facilitated by the enzyme DNA methyltransferase 1 
(DNMT1), contributes significantly to the onset and progression 
of TNBC [129]. Subsequently, it regulates the techniques of 
genome imprinting, post-translation, transcription and silencing 
repetitive DNA regions. ER+ cancers are a long way more likely 
to have altered DNA methylation than ER + tumors [130]. In the 
evaluation of ER tumors, ER+ tumors were substantially more 
likely to undergo DNA methylation alterations. 
 
Histone modification (HM): 

Histone proteins often change post-translationally and regulate 
the chromatin. HM patterns in BC cells are distinct, based on 
their unique phenotypic traits. The HM enzyme EZH2 is 
associated with more severe forms of BC [131]. Recent studies 
have shown that HER2-amplified breast cancer shows enhanced 
H3 and H4 lysine acetylation [132,133]. Significant data suggest 
that luminal BC had higher levels of these HM markers, which 
improved the prognosis [134]. However, low marker levels 
predicted poor outcomes in HER2+ and triple-negative breast 
cancer [135].   

Noncoding RNAs (ncRNAs): 

Transcriptomics rapidly identifies disease-related ncRNA 
functions. These transcripts are categorized into lncRNAs (long 
ncRNAs) and sncRNAs (small ncRNAs) based on their 
regulatory features and length, both of which influence gene 
expression [136]. It exerts a substantial influence on BC 
development by modulating diverse cellular functions [137]. The 
rise in ncRNAs affects gene expression and contributes to breast 
cancer development and lncRNAs, which exceed 200 nucleotides 
in length, play a role in regulating human gene expression and 
various physiological and pathological processes. Secondary and 
tertiary structures may help to attract targets. In breast cancer, 
lncRNA GAS5 is downregulated. HOX transcript antisense 
intergenic RNA (HOTAIR) upregulation leads to BC metastasis 
[138]. Upregulation of metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1) is associated with 
reduced 5-year survival in BC patients. Decreased MALAT1 
levels diminished breast cancer invasion and progression [139]. 
Other regulatory sncRNAs support crucial biological processes 
through RNA-protein complexes and contribute to cancer 
development in multiple ways [140]. MiRNAs significantly 
influence BC pathogenesis. Owing to their cell and tissue 
specificity, miRNA expression patterns can differentiate between 
normal and breast cancer samples based on molecular subtype 
and hormonal status [141]. These multi-marker miRNAs play 
vital roles in breast cancer prognosis, targeted treatment and 
efficacy [142-144]. 
 
Signalling pathways in BC: 

Hormones usually regulate the proliferation of mammary cells. 
Cells communicate through diverse signalling pathways [145]. 
Aberrations in signalling pathways can cause the development 
and spread [146]. Genetic and epigenetic adjustments impact the 
tumor microenvironment. Discrepancies in any of these 
pathways will lead to unpredictable results in other pathways 
[147]. The following sections highlight the essential signalling 
pathways and their interactions that govern mammary gland 
development and breast cancer. A complex stroma encases a 
densely branched web of epithelial tubes that comprises the 
mammary glands. An epidermal placode gives rise to mammary 
epithelium during embryonic development. Ten to twelve 
primitive ductal components situated underneath the areola-
nipple complex constitute the breast rudiment at birth. The 
presence of mammary stem cells (MaSCs) in situ and unipotent 
cells that regulate ductal tree homeostasis and morphogenesis 
has been brought to light by lineage tracing. Additionally, it has 
been determined that both normal human and mouse mammary 
tissues include a variety of luminal progenitor subtypes. MaSCs 
make up a relatively tiny percentage of the undifferentiated cells 
of the mammary gland, which may divide symmetrically, and 
asymmetrically to generate a range of differentiated cells and 
create new MaSCs through self-renewal. Breast Cancer stem cell 
(BCSC) theory proposes a division regarding the nature of 
cancer stem cells (CSCs): they are either the initial cells from 
which cancer develops, or they represent malignant cells that 
have acquired stem cell characteristics. The first perspective is 
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rooted in the observed parallels between tissue regeneration and 
tumor formation processes, while the alternative suggests the 
transformation of cancerous cells into stem-like entities. 
 
Estrogen (ER) signalling pathways: 

ER is conventional steroid receptors. Two unique genes, ESR1 
and ESR2, encode the alpha (α) and beta (β) isoforms of ER. 
These receptor elements are transcriptional and induce a series 
of actions. Although BC cell survival and proliferation are 
associated with ERβ expression, its specific features are yet to be 
understood. In response to contact with estrogen, the ER 
receptor protein fiberizes and accounts for nucleus dislocation, 
which controls transcriptional activity. In the final step, ER 
coactivators (CoA) are engaged, which attach in a coordinated 
manner to the estrogen response element (ERE) sequences 
within the DNA, initiating the transcription of numerous genes 
that control signal transduction and cell viability [148]. Although 
ERα expression is frequently accelerated in breast cancer, its 
association with ERβ improves the analysis [149]. 
Postmenopausal women with a relative decrease in estrogen 
levels undergo metabolic alterations associated with the law of 
electricity metabolism using ER signaling [150]. A growing 
number of studies indicate that overexpression of Erα causes 
70% of breast cancers, but this is a small percentage. In normal 
breast tissues, there is an inverse relationship between Erα 
expression and cellular proliferation, which can be explained by 
the fact that Erα expression is downregulated when cells enter 
the mobile cycle. In contrast, Erα cells in benign breast tumors 
transform precancerous hyperplasia into invasive malignancy 
via apoptosis, mobile cycle arrest and senescence [151]. 
 
Signaling path for HER2: 
Type I trans-membrane receptors, called human epidermal 
growth factor receptors (HERs), promote intracellular signaling 
in response to inputs from the outdoor environment. A ligand 
can induce homo- or hetero-dimerisation when it binds to HER 
proteins. Tyrosine residues in the intracellular area are 
phosphorylated at some point during protein dimerization [152]. 
Adaptor proteins that might be attracted to phosphorylated 
residues trigger messenger pathways downstream, including the 
PI3K/Akt and MAPK pathways (Figure 2) [153,154]. 
Furthermore, Akt/mTORC1-mediated HIF-α stimulates VEGF 
secretion and enhancing angiogenesis [155]. The number 
common cause of breast cancer is HER2 amplification. 
Chemotherapeutic drugs are more effective against HER2-
tremendous breast cancer cells, which might also be more 
susceptible to brain metastasis [156]. HER2 overexpression in 
breast cancers is a prime reason for most cancers, making it 
treatable [157]. As receptor tyrosine kinases, HER and its fellow 
EGFR family members are situated on the cellular membrane, 
where they react with a broad spectrum of ligands. Activation of 
downstream oncogenic signaling cascades, such as the 
PI3K/AKT and Ras/MAPK pathways, is triggered by the 
phosphorylation of the tyrosine kinase domain located in the 
cytoplasm. 

 
Figure 2: HER pathway 

 
HER/EGFR - Human epidermal growth factor receptors, PI3K - 
phosphatidylinositol 4,5-bisphosphate 3-kinase, AKT 
alternatively referred to as protein kinase B (PKB), GSK3 - 
Glycogen synthase kinase 3, MDM2 - murine double minute, 
mTOR - mammalian target of rapamycin, GRB2 - Growth factor 
receptor-bound protein 2, SOS - Son of Sevenless, RAS – Ras 
protein, RAF - Rapidly Accelerated Fibrosarcoma,  MEK/MAPK 
– mitogen activated protein kinase. 
 
 

Notch signaling:  

The signaling cascade is important for embryonic improvement, 
and it is possible that both organogenesis and cancer share 
similar molecular procedures [158]. Notch signaling was first 
found to be related to BC in MMTV-induced tumors. In vitro 
atmospheric culture revealed bizarre Notch activation and 
accelerated NICD and HES1 accumulation, imparting insight 
into DCIS's molecular characteristics of DCIS. Notch3 stimulates 
tumor cell self-renewal and aggressive metastasis [159]. The 
Notch signaling pathway is activated when Del or Jag protein 
ligands interact with Notch receptors. This interaction triggers 
proteolytic cleavage and NCID binding, ultimately leading to 
the transcription of genes involved in angiogenesis. 
 
AKT/mTOR/PI3K pathway: 

The intracellular vesicular trafficking enzyme PI3K is an 
important signal modulator. Numerous extracellular signals 
cause PI3K to turn out to be autophosphorylated, which then 
activates PDK1 and AKT. Mutant PIK3CA is present in twenty 
to thirty percent of BC patients and in clinical settings, these 
results in resistance to anti-HER2 medication [160]. Since AKT 
can nevertheless trigger the ER pathway in the absence of 
estrogen, similar research has determined that the PI3K/AKT is 
proof against endocrine remedies. Therefore, resistance may be 
prevented by combining endocrine therapy with AKT and 
mTOR inhibitors [161]. 
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Hedgehog signalling pathway: 

Tumor improvement and metastasis are pushed via downstream 
targets of the Hh pathway, while GLI protein upregulates pro-
angiogenic secreted molecules, such as cysteine-rich molecules. 
GLI protein upregulates seasoned-angiogenic secreted molecules 
along with neuropilin 2 (NRP2), cysteine-rich angiogenic 
inducer 61 (CYR61), and VEGFR1 and VEGFR2 co-receptors, 
even as SHH increases the launched factors [162]. In BC cells, the 
hVEGF-A gene promoter was upregulated using a shorter GLI1 
[163]. In transgenic mouse embryos, excessive Hh signaling can 
result in aberrant mammary buds [164]. Immunohistochemistry 
studies have shown that invasive tissues containing carcinomas 
have accelerated expression levels. However, consistent with the 
latest studies, BC metastasis was due to the activation of GLI. 

 
Breast cancer treatments: 
Treatment options for BC include chemotherapy, radiation 
therapy, surgery, targeted therapy, and hormonal therapy with 
the choice depending on factors such as tumor stage, biomarkers 
and individual patient characteristics [165-167]. Radiation 
therapy exhibits a crucial part in improving survival, 
particularly after surgery and in high-risk subjects after 
mastectomy [168]. Targeted therapies such as HER2-targeted 
treatments have enhanced the benefits for patients with HER2-
positive breast cancer [169]. Hormonal therapy as well as 
aromatase inhibitors, and selective estrogen receptor modulators 
(SERMs) is effective for hormone receptor-positive breast cancers 
[170,171]. Chemotherapy remains a crucial component of 
treatment, especially for TNBC [172,173]. The effectiveness of 
these treatments can vary based on patient age, with older 
women less likely to receive guideline-concordant care for 
various treatment modalities [174]. Additionally, emerging 
research has focused on amino acid metabolism as a potential 
therapeutic target [175] and on the use of predictive biomarkers 
to guide personalized treatment decisions [176]. A combination 
of multiple treatment modalities is often recommended to 
achieve outcomes in breast cancer management [177-180]. 
 
Conclusion: 

This review aims to provide a comprehensive and up-to-date 
overview of breast cancer, focusing on its current 
epidemiological trends, identified risk factors, classification 
systems, prognostic biomarkers and existing treatment options. 
The substantial rise in both breast cancer incidence and fatality 
rates over recent decades underscores the critical need for 
implementing the most effective preventive measures. 
Advancements in breast cancer patient care and outcomes have 
been significantly influenced by persistent exploration of 
prognostic biomarkers and potential targets for biological 
therapies. 
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