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Abstract: 
Identification of promoter region is an important part of gene annotation. Identification of promoters in eukaryotes is important as promoters modulate various 
metabolic functions and cellular stress responses. In this work, a novel approach utilizing intensity values of tilling microarray data for a model eukaryotic plant 
Arabidopsis thaliana, was used to specify promoter region from non-promoter region. A feed-forward back propagation neural network model supported by 
genetic algorithm was employed to predict the class of data with a window size of 41. A dataset comprising of 2992 data vectors representing both promoter and 
non-promoter regions, chosen randomly from probe intensity vectors for whole genome of Arabidopsis thaliana generated through tilling microarray technique 
was used. The classifier model shows prediction accuracy of 69.73% and 65.36% on training and validation sets, respectively. Further, a concept of distance based 
class membership was used to validate reliability of classifier, which showed promising results. The study shows the usability of micro-array probe intensities to 
predict the promoter regions in eukaryotic genomes.  
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Background: 
With the continuously increasing number of various genome sequencing 
projects, predicting promoters has become one of the prime focuses for gene 
identification and annotation. Promoter-prediction is multi-informative, as 
along with delineating one end of gene and being key to gene regulation; it also 
gives a cue to functional aspect of gene [1]. In eukaryotes promoter guides the 
cell development and differentiation, tissue morphogenesis and specificity, 
hormonal communication, and cellular stress responses [2]. Moreover the 
knowledge of promoter may lend clues for function of completely anonymous 
proteins which cannot be retrieved from already predicted amino acid 
sequences [3]. In eukaryotes promoters are classically defined as the start site 
of transcription (TSS) [1]. According to a geneticist’s view promoters are cis-
acting elements deciding the site and rate of transcription, while according to 
biochemist’s view; these are target sites of transcription factors [4]. Eukaryotic 
promoters are of three types viz., core promoters, proximal promoters and 
distal promoters that have different roles in gene regulation. Core promoters, 
also known as minimal promoters are located ~80 to 100 base pairs (bp) around 
TSS and are required for initiation of transcription. Proximal promoters located 
~250 to 1000 upstream of core promoter, are position and species specific, 
involve transcription factor binding site and initiate basal transcription. Distal 
promoters located further upstream and also known as enhancers involve 
additional regulatory element binding sites at distal regions from transcription 
start site [5, 6]. For computational prediction, core promoter is more important 
as it is the first essential site required for the initiation of transcription [1]. 
Eukaryotic core promoters have TATA box as an integral part which lies 25-30 
bp upstream of TSS [7]. So for retrieving the locations of promoter sequences, 
location of TATA box can be searched and region upstream to TSS with TATA 

box of known genes can be targeted. Major challenges associated with 
promoter prediction methods involve weak models used for promoter regions 
and algorithmic constraints [5]. Also, it has been reported that using existing 
promoter prediction methods miss 30-40% of true promoters and have a false 
positive rate of 45-60% [8]. Complex architecture of promoter sequences 
presents a computational problem yet to be solved satisfactorily [3]. Methods 
for promoter prediction are in their infancy and level of accuracy achieved is 
low [9].  
 
The success of prediction depends upon biological model, type and quality of 
training data utilized [10]. In general, most of the computational methods for 
promoter prediction are based on models searching for organization of 
promoters,  promoter location [11] or for the hallmarks of promoters as CpG  
islands [12], TATA boxes [13], CAAT boxes [14], specific transcription factor 
binding sites (TFBSs) [13, 14], pentamer matrix [15] and oligonucleotides [16].  
Various computational strategies applied for this purpose involve: neural 
networks [12], linear and quadratic discriminant analyses [17], interpolated 
Markov Model [14], independent component analysis (ICA) [18], and non-
negative matrix factorization (NMF) [19]. All the methods have their own 
advantages and limitations. Selection of an appropriate combination of 
biological features and computational approach for accurate promoter 
prediction is still an open issue. In the present work we have dealt with this 
problem by utilizing tilling microarray intensities for nucleosome rich DNA of 
chromosome 1 of Arabidopsis thaliana. Although, microarray expression data 
have been used to establish correlation between DNA sequence and promoter-
strength [20], but using it for predicting the promoter location is a novel 
approach.   
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It has been shown that nucleosome is located at ~ +40±15 bp of TSS i.e., 
mostly downstream from typical TATA box position. It can be inferred that 
TATA box is situated within 5’ half of nucleosomal DNA or right upstream of 
it.  Further, nucleosomal distribution around the TSS has a strong correlation 
with promoter region [21]. Therefore, microarray experiment was designed to 
retrieve nucleosomal rich DNA regions to ensure the incorporation of promoter 
regions. Further, as analyzed from various biological features adopted for 
promoter prediction, length and composition of DNA sequence i.e., GC content 
plays an important role in distinguishing promoter region from non-promoter 
[22]. Difference in melting temperature due to different composition of 
promoter sequence may result into different pattern in hybridization intensity 
which can be detected. Our work explored conglomerative machine learning 
approach to utilize data obtained from high throughput and high resolution 
tilling microarray data for detection of promoter region. 
 
Methodology: 
Dataset:  
Intensity values for mononucleosomal DNA regions were obtained from tilling 
microarray data downloaded from gene expression Omnibus (GEO) at NCBI 
having GEO accession: GEO25553, available at 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse25553. Also whole 
genomic DNA tilling microarray intensity values generated under the same 
experimental conditions were obtained from same geo data series, which were 
used for normalization of mononucleosomal DNA intensity data. Intensity data 
for mononucleosomal regions was vectorized to consider the context intensity 
values of neighboring probes as a window around centrally positioned intensity 
value. Several window sizes were tested and finally size of 41 was chosen by 
trial and error to include 41 consecutive probes, considering the average range 
of number of probes comprising different known promoter regions in training 
data. 
 
Each window comprised the intensity for the probe in question (P) positioned 
at the centre of the window i.e., 21st position so that P was represented with 20 
intensity values on both sides. A probe in question (P) refers to the tilling array 
position against which the nucleosome was to be detected. For extremities zero 
padding of required size was done. Thus finally the input feature for 779303 
data yields 779303 row vectors each consisting of 41intensity values. Promoter 
locations for fifty genes from chromosome 1 of A. thaliana were identified 
considering the presence of TATA box in the proximity (17-25 base pairs 
upstream) of start codon for the genes concerned. Intensity vectors 
corresponding to these promoter regions were retrieved to prepare the initial 
data set. All the 1492 vectors representing 50 promoter regions and 1500 
vectors representing non-promoter regions were retrieved. Thus we had 2992 
data each comprising a vector of 41 consecutive probe intensity values. 
 
Training set and Validation set:  
Data was divided with a ratio of 30:20 for training (897 and 900 data for 
promoters and non-promoters respectively) and validation (595 and 600 for 
promoters and non-promoters respectively) data set respectively. Thus training 
and validation sets consisted of 1797 and 1195 vectors respectively. Mean was 
calculated for data of each column of training set. Training data was 
normalized by subtracting the column wise mean from each element of column 
concerned. The mean calculated from training data was used for normalizing 
the validation set also. 
 
Model development using Neuro-GA approach: 
The classification of data was done using a feed-forward backpropagation 
network model, where normalized probe intensity vectors were fed as input. 
Several architectures for neural network were tried for training. Finally a three 
layer neural network giving maximum efficiency was chosen as classification 
model. While the input layer comprised forty one inputs, first and second 
hidden layers consist of twenty and ten nodes respectively. The output layer 
contains two nodes to represent two classes of our interest i.e., promoter and 
non-promoter. Target output vectors were created as [-1 1] for promoter region 
and [1 -1] for non promoter regions. Tan sigmoid transfer function was used in 
both hidden and output layers. To enhance the speed of learning Levenberg-
Marquardt algorithm was applied. Mean square error of decisions was used as 
performance function for the network. The weights and biases of trained ANN 
were arranged into a vector comprising 1072 variables and optimized using a 
strategy following a published protocol using Genetic Algorithm [23].  Initial 
population was created by randomly adding or subtracting uniformly 
distributed random numbers between 0 to 10% of the value of each element of 
the combined vector obtained by the combination of weight-matrices and bias-
vectors. Fitness scaling was done using the rank of each individual. Scattered 

crossover and uniform mutation with rate of 0.01 was used to generate new 
generations of population. Percentage efficiency in correctly classifying 
validation data using current weights and biases was used as fitness function. 
Optimized weights and biases were used for promoter-prediction. 
 
Cross validation using efficiency measures and distance based 
membership: 
Sensitivity, specificity and accuracy were used as measures of efficiency of 
classification as the classification of probe intensity values into promoter and 
non-promoter classes is a binary classification [24]. Further a new statistic 
‘distance based membership’ of correctly predicted class by neural network in 
the original class was calculated. Euclidian distances were measured between 
the predicted output and original target output as given in Supplementary 
material.  
 
Discussion: 
Accuracy, sensitivity and specificity of trained network on training data set 
were found to be 69.73%, 73.91% and 65.56% respectively. Accuracy, 
sensitivity and specificity of trained network on validation data set were found 
to be 65.36%, 71.26% and 59.50% respectively, as tabularized in Table 1 (see 
Supplementary material). Our method has given false positive rate of 40.50% 
on validation data set as compared to existing methods which have a false 
positive rate of 45-60% as discussed previously. Similarly false negative rate 
was found to be 28.74% which is lower than currently available methods 
known to miss 30-40% of true promoters. Results obtained from this pilot 
study in the direction of a new approach for predicting eukaryotic promoters 
appear to be promising. Nucleosomal DNA experiment intensity values were 
calibrated by using whole genomic DNA intensities generated by hybridizing 
MNase treated genomic DNA (~150 bp) to similar Arabidopsis tilling array 
chip.  So finally the calibrated data had intensity values for nucleosome rich 
regions along with embedded genomic DNA sequence intensities. This 
facilitated statistical analysis which used the concept of context to incorporate 
the effect of genomic DNA intensity values. This might have helped neural 
network classifier to detect the hidden pattern in data for promoter regions. 
Moreover the concept of distance based class membership was introduced that 
gives an idea about the confidence with which the neural network predicted the 
class for input data. Values obtained for distance based class membership were 
found to be 64.14% and 64.94% for training and validation sets respectively. It 
indicates that the classification decision obtained through our classifier was 
reliable. The study paves a way to utilize high throughput microarray data for 
fast prediction of promoter locations. None the less, the study is also helpful to 
establish a link between promoter location, gene expression and nucleosomal 
dynamics in the eukaryotic genome. Study of nucleosomal positioning and 
dynamics in genome is of great importance and interest as it governs the gene 
expression or suppression events which are at the heart of cell metabolism. 
 
Conclusion: 
The results obtained from our study which involves robust classification of 
tilling microarray data provide new insights for the promoter prediction 
problem. The error involved in this method is possibly because of low 
resolution in the tilling microarray system. Moreover, the apparent error may 
be due to the identification of unknown promoter sites for further investigation. 
The distance based class membership statistics used to validate the classifier 
accuracy makes the results more reliable and may be used by the machine 
learning community to validate the outcome of their classifier. 
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Supplementary material: 
 
Euclidian distances: 
 
d=√((e1-o1)2  + (e2-o2)2)  
 
where e1, e2 are expected outputs and o1, o2 are predicted outputs of two output nodes respectively. For example, maximum possible distance between the predicted 
and original outputs for the promoter can be considered when the predicted outputs is (1 -1) instead of (-1 1) and vice versa for a non-promoter. Therefore, value of 
maximum possible distance (maxd) between predicted and expected output comes out to be 2√2. Class membership was thus defined as:  m=1-d/maxd. Using this 
distance their actual membership for the class assigned to them was calculated. Mean value obtained for class memberships for both the classes was used as 
measure of robustness of classification. 
 
Table 1: Detailed results of classification on training and validation sets (TP= number of true positives, TN= number of true negatives, FP= number of false 
positives, FN=number of false negatives) 

 Size of data TP TN FP FN Sensitivity Specificity Accuracy 

Training Set 1797  663 590 310 234 73.91% 65.56% 69.73% 
Validation Set 1195 424 357 243 171 71.26% 59.50% 65.36% 

 
 


