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Abstract: 
The alpha subunit of Mycobacterial DNA polymerase III holo enzyme catalyzes the polymerization of both DNA strands. The present investigation reports three 
dimensional (3-D) structure model of DNA polymerase III α subunit of Mycobacterium tuberculosis H37Rv (MtbDnaE1) generated using homology modeling 
with the backbone structure of DNA polymerase III α of Thermus aquaticus as a template. The model was evaluated at various structure verification servers, 
which assess the stereo chemical parameters of the residues in the model, as well as structural and functional domains. Comparative analysis of MtbDnaE1 
structure reveals the structure of its catalytic domain to be unrelated to that of the human. Successful docking of known inhibitor of bacterial DNA polymerases, 
251D onto the modeled MtbDnaE1 was also performed. Therefore, the structure model of MtbDnaE1, a potential anti-mycobacterial target, opens a new avenue 
for structure-based drug designing against the pathogen.  
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Background:  
Mycobacterium tuberculosis is the prime killer among infectious agents, 
accounting for 7% of all deaths and 26% of all preventable deaths [1]. The cure 
of tuberculosis is a special problem in the field of chemotherapy. Many of the 
drugs employed to treat the disease are used only for treating infections caused 
by Mycobacteria. Treatment of the active TB cases always includes 
simultaneous therapy with two or more of the frontier drugs such as isoniazid, 
ethambutol, rifampicin, and streptomycin, which are used to decrease the rate 
of emergence of resistant strains as well as to increase the antibacterial effect 
[2]. Recent outbreaks of tuberculosis caused by multidrug- resistant strains, 
mainly in individuals infected with HIV have created a worldwide interest in 
expanding current therapeutic programs. Analysis of complete genome 
sequences of the pathogen M. tuberculosis [3] and the host Homo sapiens (The 
Genome International Consortium, 2001) allows one to identify the functions 
unique to the host and the pathogen, thus facilitating the development of drugs 
specifically targeting the pathogen. Even among the pathways shared by the 
host and the pathogen, there are several proteins from pathways involved in 
lipid metabolism, carbohydrate metabolism, amino acid metabolism, energy 
metabolism, vitamin and cofactor biosynthesis, and nucleotide metabolism, 
which do not bear similarity to host proteins [4]. The enzymes in the pathways 
of M. tuberculosis, which do not exhibit similarity to any protein from the host, 

represent attractive potential drug targets. Amino acid sequence of the probable 
DNA polymerase III alpha subunit (Rv1547) of M. tuberculosis does not 
exhibit significant identity (below BLASTp e-value threshold of 0.005) with its 
counterpart in human host, and therefore can be a potential drug target against 
the pathogen.  
 
DNA polymerases play fundamental roles in DNA replication and repair. 
Among the five known eubacterial DNA polymerases (I-V), polymerase III 
(PolIII) is accountable for catalyzing DNA replication, and whereas others 
(PolI, II, IV and V) are involved in supplementary roles in replication and 
repair. The eubacterial PolIII holoenzyme, is a complex made up of ten 
subunits namely the replicase (α, ε, θ), the clamp loader (ϒ, δ, δ’, ζ, χ, ψ), and 
the sliding clamp (β2) [5, 6]. The α subunit works as a replicative DNA 
polymerase at the replication fork and plays a central role in the complex [7]. 
Based on amino acid sequence comparisons, DNA-dependent DNA 
polymerases are divided into six families denoted by A, B, C, D, X, and Y [8], 
of which A, B and C family polymerases play critical roles in replication. 
Family A includes eubacterial DNA polymerase I whereas family B represents 
all archaeal and eukaryotic replicative polymerases. The α subunit of PolIII is a 
member of family C [8]. The structures of the α subunit from family C have 
been determined recently from Thermus aquaticus (TaqPolIIIα) [9] and 
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Escherichia coli (EcoPolIIIα) [10]. Although the crystal structure of 
MtbDnaE1 has not yet been resolved, the amino acid sequence of MtbDnaE1 
shows high sequence identity with the TaqPolIIIα and EcoPolIIIα. The present 
study has been conducted to understand and elucidate the 3-D structure of 
DNA polymerase III alpha subunit of M. tuberculosis (MtbDnaE1) by 
homology modeling. This work describes, for the first time a structural model 
of MtbDnaE1. Knowledge of these structural features of MtbDnaE1 is essential 
for establishing its catalytic mechanisms of action at the molecular level, as 
well as to target the protein for designing effective and selective drug. We have 
also attempted to predict the interaction between DNA polymerase III alpha 
and its potential inhibitor namely 251D in silico via the process of docking. 
 
Methodology:  
Phylogenetic analysis and sequences alignment:  
For phylogenetic analysis, the amino acid sequence of the MtbDnaE1 [11] was 
aligned against homologues sequences collected from the SwissProt 
(http://www.expasy.org/sprot/) database at PSI-BLAST E-value: 0.001 by 
using ConSurf server [12]. Multiple sequence alignment was performed using 
ClustalW [13]. Putative phylogenetic trees prediction for multiple sequence 
alignment by cluster algorithms was done by TreeTop- Phylogenetic Tree 
Prediction server [14]. In the bootstrap, multiple alignment was resampled 100 
times, i.e. 100 trees were generated. 
 
Structure modeling and validation, and identification of functional 
domains: 
A blast search for MtbDnaE1 sequence (accession number NP_216063) was 
performed to search for the most suitable templates. The structures of DNA 
polymerase III alpha subunit from Thermus aquaticus (PDB entry 2HPI_A) 
and Escherichia coli (PDB entry 2HNH_A) were taken from Protein Database 
(PDB) [15]. Multiple sequence alignment of the target and templates was 
performed using ClustalW. The final structural models were built by using the 
mod6v2 version of the MODELLER program [16]. The generated 3-D 
structural models were visualized by Swiss PDB Viewer [17]. The models were 
evaluated at various structure verification servers as PROCHECK and 
WHAT_CHECK. The best model was chosen on the basis of its stereo 
chemical quality account using PROCHECK [18] and WHAT_CHECK [19]. 
The functional domains of MtbDnaE1 were obtained by submitting amino acid 
sequence to Pfam and InterPro servers [20, 21].  
 
Docking of the inhibitor 251D onto the active site of MtbDnaE1: 
The ligand molecule 251D is the hybrid compound of anilinouracil, 3-(4-
hydroxybutyl)-6-(3-ethyl-4-methylanilino) uracil (HB-EMAU), and 
fluoroquinolone, {1-cyclopropyl-6,8-difluoro-7-[1-(3-methyl)piperazinyl]-4-
oxo-1,4-dihydroquinoline}-3-carboxylic acid (340E) [22]. The ligand molecule 
was retrieved from CORINA [23]. The Modeller-generated three dimensional 
structure of MtbDnaE1 was taken as receptor molecule. The AutoDock 4.0 
suite was used as molecular-docking tool [24]. The Graphical User Interface 
program "Auto-Dock Tools" was used to prepare, run, and analyze the docking 
simulations.  Kollman  united  atom  charges,  salvation  parameters  and   polar  

hydrogens were added into the receptor PDB file for the preparation of protein 
in docking simulation. Gasteiger charge was assigned to the ligand molecule 
which is a non-peptide structure, and subsequently non-polar hydrogens were 
merged. Grid points spacing in the grid box (x, y, and z:78, 78, and 92 Å ) was 
kept at 0.375 Å. AutoGrid 4.0 Program, supplied with AutoDock 4.0 (compiled 
and run under Linux operating system) was used to produce grid maps. The 
best conformers, out of the total 100 studied during the docking process, were 
selected on the basis of Lamarckian Genetic Algorithm (LGA). The individuals 
were selected randomly with the population size of 150. Maximum number of 
energy evaluation was set to 250,000,00, maximum number of generations 
270,000, maximum number of top individual that automatically survived set to 
1, mutation rate of 0.02, crossover rate of 0.8. Step sizes were 0.2 Å for 
translations, 5.0° for quaternions and 5.0° for torsions. For docking simulation, 
cluster tolerance was set at 0.5 Å and external grid energy was kept at 1000 
kcal with maximum initial energy 0.0 kcal. A total of 10 LGA runs were 
performed with the maximum number of retries taken as 10000. All the 
AutoDock docking runs were performed in Intel Xeon CPU @ 3.2 GHz of HP 
origin, with 2 GB DDR RAM. The molecular interactions between the ligand 
(251D) and the protein (MtbDnaE1) were analyzed using "Auto-Dock Tools" 
(Version 1.50). 
 
Discussion: 
Phylogenetic analysis: 
The phylogenetic analysis of the MtbDnaE1 amino acid sequence showed the 
MtbDnaE1 to be closest to that of M. leprae (Supplementary Figure 1). 
However, it appears to have branched away much earlier from that of M. 
paratuberculosis. Surprisingly, it showed greater closeness to its counterparts 
in the bacteria of other genus such as S. coelicolor, A. aeolicus and T. 
aquaticus. 
 
Structural model and overall architecture: 
As the crystal structure of TaqPolIIIα (2HPI_A) is a full-length structure and 
the EcoPolIIIα crystal structure (2HNH_A) is only a large fragment structure, 
available PDB structure of TaqPolIIIα (2HPI_A) was used as a template to 
generate the homology model of MtbDnaE1. The structural model of 
MtbDnaE1 reveals that it is organized into an irregular pyramid around a 
central cavity (Figure 1A & 1B). The quality assessment of the predicted 
model by the PROCHECK program that uses the Ramachandran plot [25], 
shows that the modeled MtbDnaE1 has 89.9% residues in most favorable 
regions, 9.5% residues occurring in allowed regions and 0.6% residues were 
found in the disallowed regions. These values are comparable with the 
stereochemical data (87.5%, 12.2 and 0.3%, respectively) of the X-ray - 
resolved structure of the TaqPolIIIα. All main chain and side chain parameters 
were found to be in the ‘better’ region. The observed G-factor score (-0.10) of 
the present model was much above the G-factor score (-0.50) of a reliable 
model. Planar groups in the modeled structure were 100% within limits. The 
structure verification server such as WHAT_CHECK also validated the 
modeled MtbDnaE1 structure. Thus, the modeled structure of MtbDnaE1 is 
comparable to the structurally resolved polIIIα subunit of T. aquaticus. 

 

 
Figure 1: (A) The homology-modeled structure (spacefill model) of MtbDnaE1 with the predicted cavity and domains, using TaqPolIIIα (PDB entry 2HPI_A) as a 
template. (B) The ribbon structure of the predicted model as visualized by Swiss PDB Viewer. All the structures are shown by secondary structure sucssession 
color scheme.  
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Conserved domains: 
The functional domains analysis of the modeled MtbDnaE1 revealed that the 
MtbDnaE1 contains three conserved structural domains. The N-terminal is 
formed by the PHP (polymerase and histidinol phosphatases) domain [26], a 
putative phosphodiesterase domain (aa 11-231; TaqPolIIIα1-285). The C-
terminus of MtbDnaE1 contains OB-fold (oligonucleotide/oligosaccharide-
binding fold) domain that binds to nucleic acids. This domain is similar to the 
c-terminal domain, or CTD of TaqPolIIIα (aa 1013-1220). In between the PHP 
domain and OB-fold domain, MtbDnaE1 contains a highly conserved region of 
499 residues (aa 263-762). In TaqPolIIIα, this region contains three domains- 
the palm (aa 286-492 and 575-622), the thumb (aa 493-574) and the fingers (aa 
623-835). In MtbDnaE1, the region of 260 residues (aa 763-1023) shows no 
similarity with any structural domain in Pfam. However, ~45% residues in this 
region are identical to the β binding domain of TaqPolIIIα (aa 836–1012) that 
contains the internal binding site for the β-clamp [27]. It is possible that the 
region from residues 763-1023 in MtbDnaE1 also contains a α-binding 
domain. 
 
Active site residues: 
In all PolIIIα that have been studied, catalysis is mediated by two divalent 
metal ions that are anchored by three crucial aspartate or glutamate acidic 
residues. Two of the acidic residues must be adjacent or separated by a single 
amino  acid  [28].  Based  on   these   motifs,   the   MtbDnaE1   sequence   was  

compared to sequences of other PolIIIα sequences to identify candidates for 
key active-site residues. The presence of conserved active site comprising P-D-
X-D-X-D could be detected at amino acids 420-425 in the MtbDnaE1 (data not 
shown). The three catalytic aspartates of MtbDnaE1 (D421, D423, and D587) 
align with the three absolutely conserved aspartate residues of TaqPolIIIα 
(D463, D465, and D618). Thus, like all other known polymerases, the 
MtbDnaE1 is likely to utilize the same two-metal-ion catalytic mechanism 
[29]. It is likely that two of the aspartates are involved in the coordination of 
the two Mg2+ ions that are critical to the phosphotransferase activity. The third 
aspartate acts as a general base to activate the primer strand for nucleophilic 
attack on the α phosphate group of the incoming nucleotide [30]. Three other 
conserved residues in the MtbDnaE1 (G383, S384, and K585) correspond to 
the G425, S426, and K616 of the TaqPolIIIα. The glycine and serine lie in a 
loop which forms part of the incoming nucleotide binding pocket and are 
conserved across all the 50 PolIIIα (data not shown). The lysine forms a salt 
bridge with the phosphate group of the terminal 3’ base of the primer [31] and 
is absolutely conserved as a positive residue in family C polymerases. The 
MtbDnaE1 consists of a cluster R410, R416, R736, K737 corresponding to the 
cluster of four highly conserved arginine residues (R452 and R458 from the 
palm and R766 and R767 from the fingers domain) in TaqPolIIIα that interact 
with the dATP (triphosphate) and lies approximately 10Å away from the 
catalytic aspartates on the palm domain [14, 15], with an exception of the 
fourth ariginine having been replaced by lysine (Figure 2A). 

 

 
Figure 2: (A) Active site cleft of homology-modeled MtbDnaE1 showing conserved residues involved in catalytic function in stick form and colored white 
(carbon), blue (nitrogen), and red (oxygen). Hydrogen bonds are depicted as green lines (B) Lowest energy structure for MtbDnaE1 docked with 251D. MtbDnaE1 
protein is displayed as cyan colored surface, the docked ligand is displayed as a stick model. (C) Detailed view of 251D docked into the MtbDnaE1. The ligand is 
shown as a green stick model. The protein backbone is displayed as cyan colored ribbon diagram, while active site residues (Arg410, Arg416, Arg736, and 
Lys737) are listed and shown as stick diagram.  
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Docking of MtbDnaE1 with 251D: 
Compound 251D has been shown as a potent inhibitor of bacterial replicative 
DNA polymerase [22]. Further, 251D has been reported to show low in vitro 
cytotoxicity [22]. Therefore, molecular docking of the homology modeled 
MtbDnaE1 was performed with 251D (Figure 2B). In this study, semi-flexible 
docking was performed, where the target protein MtbDnaE1 was kept as non-
flexible while the ligand (251D) was kept flexible to facilitate random degrees 
of freedom (including torsional and spatial degrees of freedom) spanned by the 
translational and rotational parameters. All the amide bonds were set rigid 
while all other bonds in the ligands were allowed to rotate freely. As required 
by the AutoDock, pre-calculated grid maps were assigned to each atom type, 
present in the ligand. AutoGrid, a part of ADT calculates the energy of non-
covalent contacts between the protein and ligand at different grid points. In the 
present study, the area of interest was selected on the basis of amino acid 
residues, which are implicated in binding with the incoming nucleotides. 
Thermodynamic properties like free energy of bindings (ΔGb) and inhibition 
constant (Ki) were generated by docking of the 251D onto the MtbDnaE1. The 
estimated free energy of bindings was -16.04 Kcal/mol and estimated inhibition 
constant was 1.74pM. The 251D interacts with the active site residues (R410, 
R416, R736, and K737) of the MtbDnaE1 via hydrophilic-hydrophilic contact 
(hydrogen bond), hydrophobic-hydrophobic contact and hydrophobic- 
hydrophilic contacts (Figure 2C and Table 1 see Supplementary material). 
The present study thus predicts the possible interaction of the inhibitor 251D 
with the MtbDnaE1, its position with respect to the active site and binding 
energies to understand the nature of binding.  
 
Conclusion: 
The crystal structure of full-length Thermus aquaticus PolIIIα represents the 
first crystal structure of a cellular replicative polymerase which has 
approximately 43% sequence identity with the MtbDnaE1. This high degree of 
sequence identity led us to design the structural model of MtbDnaE1. In fact, a 
protein sequence with over 30% sequence identity to a known crystal structure 
can often be modeled with an accuracy equivalent to a low resolution X-ray 
structure [32]. The structural model of MtbDnaE1 generated on the template 
TaqPolIIIα in this study represents the first structure model of MtbDnaE1 in 
the absence of its crystal structure. An evaluation of the stereochemical quality 
of the modeled structure by using PROCHECK and WHAT-CHECK programs 
shows the reliability of the modeled protein. The presence of conserved 
catalytically active site residues D421, D423, and D587, provides insight into 
the catalytic mechanism of this enzyme and indicates that it may be similar to 
that of Thermus aquaticus and E. coli. Docking with the known inhibitor 251D 
demonstrates the role played by the conserved active site residues in the 
MtbDnaE1. As the catalytic domains of the replicative polymerases in humans 
and Mycobacterium are not homologous, the active site residues of the 
MtbDnaE1 can be targeted to develop novel drugs to specifically block the 
Mycobacterial polymerase and thus inhibit tuberculosis progression.  
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Supplementary material:  
 
Table 1: Hydrogen bond interactions between 251D and MtbDnaE1 with their bond distances  

251D MtbDnaE1  Distance (Å) 

O43 R736 NH1 3.0 
O43 R736 NH2 2.86 

 
 

 
Supplementary Figure 1: TreeTop - Phylogenetic Tree for multiple sequence alignment of MtbDnaE1 in Phylip format by cluster algorithms. The numbers on 
the nodes are bootstrap values in percentages.  The Swiss-Prot ID numbers  of  the PolIIIα from different bacteria are given in brackets.   
 
          
  


