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Abstract: 
Non-redundant protein datasets are of utmost importance in bioinformatics. Constructing such datasets means removing protein sequences that overreach 
certain similarity thresholds. Several programs such as ‘Decrease redundancy’, ‘cd-hit’, ‘Pisces’, ‘BlastClust’ and ‘SkipRedundant’ are available. The 
issue that we focus on here is to what extent the non-redundant datasets produced by different programs are similar to each other. A systematic 
comparison of the features and of the outputs of these programs, by using subsets of the UniProt database, was performed and is described here. The 
results show high level of overlap between non-redundant datasets obtained with the same program fed with the same initial dataset but different 
percentage of identity threshold, and moderate levels of similarity between results obtained with different programs fed with the same initial dataset and 
the same percentage of identity threshold. We must be aware that some differences may arise and the use of more than one computer application is 
advisable. 
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Background: 
Protein sequence databases are extremely redundant and their redundancy 
must be removed in many different studies. Redundancy in a dataset occurs 
when several similar data are present at the same time [1]. In 
bioinformatics, redundancy in a collection of sequences occurs when one 
or more similar/homologous sequences are present in the same set of data. 
The inclusion of similar sequences in certain analyses will introduce 
undesirable biases. This occurs in particular when average values or trends 
have to be extracted from the data, like for example the average amino acid 
composition [2, 3]. Another important issue is that the biological 
databases, such as UniProt [4], are growing at an astronomical rate, 
together with the redundancy of their entries. As a consequence, hardware 
requirements (CPU and memory) become increasingly expensive and 
redundancy reduction results also in lower computational costs.  
 
Different computer programs for removing redundancy are available. They 
utilize different alignment methods (global or local alignment) and 
clustering algorithms. In the present work, several computer programs are 
compared systematically. Beside a general evaluation of their results, the 
main concern is to what extent the results of different methods are similar 
or different. Certain differences have been observed when using programs 
that utilize different methodologies. This indicates that any research that 
requires non-redundant sequence datasets should be taken with 
consciousness. If possible, it would be preferable that the research should 
be conducted using several non-redundant datasets obtained by using 
different programs. 
 
Software: 
Five  different  computer  programs  were used: Decrease  Redundancy [5],  

cd-hit [6], Pisces [7, 8], BlastClust [9, 10] and SkipRedundant [11]. Some 
of them, like cd-hit and Pisces, are standalone applications, others are part 
of standalone packages such as BLAST (BlastClust) and EMBOSS 
(SkipRedundant), while one is available as a web based server (Decrease 
Redundancy). The computer programs used in this study along with 
version number (where known) and URL are listed in Table 1. Four 
different percentages of identity (PID) thresholds were used: 40%, 50%, 
75% and 90%. Smaller and more stringent values were not used, since they 
cannot be used by all the computer programs. 
 
Test environment: 
All standalone applications including those that are part of standalone 
program packages were tested on the same test platform: Intel Xenon 
3.4GHz (4 CPU) with 2GB RAM, running Red Hat 4.1.2-13 (Linux 
version 2.6.22.2-42.fc6). All the tested standalone applications don’t 
impose any CPU or memory requirements on the computer. However, as 
the applications utilize Needleman-Wunsch or Smith-Waterman sequence 
alignment algorithms, which both have time and space complexity 
O(MxN) (M is number of sequences and N is length of sequences), the 
computational requirements depend on the number and size of the 
sequences and not as much of the program itself. The program Decrease 
redundancy was tested using its web server, since the standalone software 
is not distributed.  
 
Datasets: 
The sets of protein sequences, necessary for testing the various computer 
programs, were extracted from the UniProt database using a random 
number generator. Extracted sequences were used to build random sets of 
100, 1,000, and 10,000 protein sequences. This procedure was repeated in  



 

Bioinformation Volume 5 open access 

www.bioinformation.net Issue 6 Hypothesis
 

ISSN 0973-2063 (online) 0973-8894 (print)                  235  
Bioinformation 5(6): 234 - 239 (2010)  © 2010 Biomedical Informatics
 

 

 

order to build datasets containing only small proteins with less than 100 
residues, datasets with larger proteins (100-200 residues, 200-300 residues 
and so on), and datasets containing only large proteins with more than 
1,000 residues. In such way 33 datasets, summarized in Table 2 (see 
supplementary material), were constructed. All of them were used as 
inputs for the computer programs of Table 1 (see supplementary 
material), with the exception of Decrease Redundancy that, due to the web 
server CPU limitations, could process only datasets with 100 sequences or 
less. 
 
Definition of percentage of sequence identity (PID): 
The percentage of sequence identity (PID) for two aligned protein 
sequences is defined as number of aligned positions where the matching 
characters (amino acids) are identical divided by the number of aligned 
positions (including gaps, if any). This definition is not superfluous, since 
there is often some uncertainty about the operational definition of sequence 
identity [12]. 
 
Overview of different methods: 
The principal characteristics of the computer programs used in the present 
work are summarized in Table 3 (see supplementary material). Most of 
the programs allow choosing PID threshold in range from 0 to 100 percent, 
but some of them, like Pisces and cd-hit, have to some extent limited 
ranges. The maximum accepted length of the protein is not declared in 
most cases with an exception of cd-hit where the maximum length is 
limited by the maximum integer size. The maximum number of sequences 
that the programs are capable of processing is also not declared by any of 
these programs. 
 
All the programs accept input files in FASTA format, but only Decrease 
Redundancy, cd-hit and SkipRedundant provide results in the same format. 
Others like Pisces and BlastClust provide only a list of protein 
identification codes in the output file. We also verified whether the output 
is dependent on the input order, meaning whether the non-redundant output 
dataset is always the same independently of the permutations of the 
sequences in the input dataset. In the case of Pisces and BlastClust the 
output is not dependent on the order of the input. However, this is not the 
case with the other programs where the output is dependent on the order of 
the input sequences. Also, the number of non-redundant sequences 
outputted by all the computer programs is independent of the permutations 
of the input dataset. 
 
Decrease Redundancy: 
The algorithm used in this program was developed by Cédric Notredame 
and is to date unpublished. Therefore any description of this algorithm is 
currently not available.  
Cd-hit: 
Cd-hit uses the greedy incremental algorithm to cluster sequences and 
remove redundancy. Sequences are first sorted in a descending manner 
according to their length. The longest sequence is taken as the 
representative member of the first cluster. Then each remaining sequence 
is compared to the representatives of the existing clusters and if it is 
sufficiently similar to one of them, it is inserted into the cluster. Otherwise, 
a new cluster is formed with that sequence as a representative. In this way, 
all clusters are assembled.  
 
Due to the large number of pairwise alignments, empirical filters are 
applied in order to decrease the number of alignments - the most time 
consuming element of the clustering algorithm. These are ‘short word’ 
filters that are based on the following assumption: Two similar proteins 
share the same number of types of dipeptides, tripeptides, and so on. 
Therefore the pairs of sequences that do not satisfy this condition do not 
have to be aligned [6, 13, 14]. The alignment of two sequences that have 
satisfied the conditions imposed by the “short word” filters is done with the  
Smith-Waterman algorithms [15], which is able to delineate a biologically 
meaningful local alignment even if two sequences differ greatly in their 

length. Given the optimal alignment, the sequence identity is computed as 
the ratio between the number of identities and the length of the sequence 
which is not yet a member of any existing cluster. The identity threshold 
limit that must be overreached to insert a new sequence into a cluster is 
given by the user [16]. 
 
Pisces: 
This program does not provide the user with complete clusters, instead it 
outputs a list of cluster representatives. Other cluster members are omitted.  
Pisces uses the Sander and Holbohm [1] method to create non-redundant 
datasets. The first sequence of the input dataset is flagged as included in 
the non-redundant output dataset. This is a cluster representative sequence. 
Each subsequent sequence in the input dataset is flagged as excluded if it 
has a pairwise sequence identity with the first sequence lower than the user 
defined threshold. The excluded sequences then form a new dataset and the 
procedure repeats until all sequences are clustered. Pisces can use a 
combination of structural alignment at low sequence identity and sequence 
alignment at high sequence identity. Structural alignments are calculated 
using the CE program [17] while PSI-BLAST [9] is used for sequence 
alignment. If the input contains only sequences, the structural alignments 
are obviously bypassed. The sequence identity is defined as the number of 
identical pairs divided by all aligned pairs excluding gaps, if any.   
 
BlastClust (BLAST): 
The algorithm starts by pairwise comparison of all sequences using 
BLAST. For each pairwise comparison BLAST calculates two values 
‘coverage’ and ‘score density’. The ‘coverage’ is defined as max(Cx,Cy) 
or min(Cx,Cy), depending on user decision, where Cx (Cy) is the ratio 
between the length of the high-scoring-segment-pair on sequence x (y) and 
the length of sequence x (y). ‘Score density’ is defined as the ratio between 
the number of identical residues and the length of the alignment including 
gaps, if any. Alternatively ‘score density’ can be defined as ratio between 
the BLAST score and min(HxHy) where Hx (Hy) is the length of the high-
scoring-segment-pair on sequence x (y).If these two values are above a 
certain threshold the two sequences that are compared are considered to be 
neighbors. In such way, a neighbor relationship list of all input sequences 
is determined. This list is inputted into a single-linkage clustering process. 
This clustering method starts with a first sequence as a cluster 
representative and puts any other sequence into that cluster if the sequence 
is a neighbor of at least one sequence already in the cluster. All remaining 
(not clustered) sequences are stored in the new list and the same procedure 
is applied again. BlastClust repeats this procedure until all sequences are 
clustered.  
 
SkipRedundant (EMBOSS): 
With this method, all pairwise sequence alignments are calculated using 
the EMBOSS implementation of the Needleman-Wunsch global alignment 
algorithm [18]. The program can use two procedures for removing 
redundant sequences: (i) If a pair of proteins achieve a percentage of 
sequence identity greater than a threshold (specified by the user) the 
shortest sequence is discarded; (ii) If a pair of proteins have a percentage 
of sequence identity that lies outside a range (specified by the user) the 
shortest sequence is discarded. After the sequences have been removed the 
list contains only non-redundant entries.  
 
Results and discussion:  
In the following sections the results will be presented and discussed in 
three parts. First, the attention will be focused on some general features of 
the various computer programs and in particular it will be shown that all of 
them allow one to correctly remove sequence redundancy. Then, it will be 
examined what happens when the redundancy reduction becomes more and 
more severe by using the same computer program and it will be shown that 
all  the  programs  present  similar  trends  at  this  regard. Eventually, the  
attention will be focused on the comparison of the results obtained by 
using different methods and it will be shown that some differences may be 
observed on the outputs of different computer programs. 
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Figure 1: Pairwise percentages of identity calculated on the non-redundant set using the Needleman-Wunsch algorithm. Non-redundant sets were 
obtained using cd-hit program with max PID = 40%. Similar results were obtained for Decrease redundancy, Pisces and  BlastClust. 
 

 
Figure 2: Venn diagram. Overlap of four non-redundant datasets, each obtained with a different program, based on the same input dataset (D_100_100) 
and the same PID (40%). 95 sequences are common to the non-redundant outputs of BlastClust, cd-hit, Decrese redundancy, and Pisces. 
 
General considerations: 
The programs listed in Table 1 (see supplementary material) have been 
tested using the datasets extracted from UniProt database (Table 2, see 
supplementary material). Each program used four different PID 
thresholds, 40%, 50%, 75% and 90%. Smaller and more stringent values of 
PID were disregarded since they cannot be used by some of the programs 
of Table 1 (see supplementary material). As expected, if the PID 
threshold increases, the non-redundant datasets become larger, 
independently of the program. Depending on the selected PID threshold, 
40%, 50%, 75% and 90%, the output dataset is in average reduced to 90%, 
92%, 88% and 96% of the input dataset respectively. Moreover, the 
number of sequences in the non-redundant datasets, obtained by different 
programs fed with the same input datasets and PID thresholds are very 
similar. For example in the case of the D_100_500 test set with 40% PID 
the number of sequences in the non-redundant dataset is 97, 97, 96 and 97 
for Decrease Redundancy, cd-hit, Pisces and BlastClust respectively. 
Table 4 (see supplementary material) shows the percentage of sequences 
found in the output relative to the input (Ptot) at various PID threshold 
values. All the programs have similar Ptot values for the same PID with the 
exception of SkipRedundant which showed lower Ptot for PID 90%. Not 
surprisingly, smaller Ptot values are observed for smaller and more 
stringent PID thresholds. 
 
Moreover, we did not observe any correlation between the length of the 
protein sequences in the input datasets and the resulting non-redundant 
outputs. All the programs show a closely similar behavior at this regard.  

Furthermore, we examined the level of sequence similarity within each 
non-redundant dataset. We used both the Smith-Waterman (local 
alignment) and Needleman-Wunsch (global alignment) method and we 
observed some differences in the output of different computer programs. 
The average identity is in the range of 23% to 42% and 15% to 21% for 
Smith-Waterman and Needleman-Wunsch method respectively. An 
example of the distribution of pairwise identity in non-redundant datasets 
(calculated using max. PID = 40%) is given in Figure 1.  
 
Our study showed inconclusive data for the program SkipRedundant. For 
percentages of identity of 50% and lower, independently of the input 
dataset, the program reported results containing only few cluster 
representatives which were not further analyzed. Therefore the results 
obtained by this program with percentages of identity of 40% and 50% are 
not taken into further consideration in this study.  
 
These results clearly indicate that all the programs, even within the 
limitations shown by some of them, are able to produce dataset of 
sequences that are really non-redundant, as far as the redundancy is related 
to the level of sequence similarity. Apparently, therefore, any of these 
programs can be used and there is no reason to prefer one or the other. 
 
Overlaps at different thresholds: 
Previously, we have shown that the size of the non-redundant datasets 
increases with the percentage of identity threshold used by the programs. 
For  example  there  are  91  sequences  outputted  by  Pisces  fed with the  
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dataset D_100_800 if the PID threshold is 40% while 92 sequences are 
outputted if the threshold is 50%. It is also interesting to examine the 
overlap between these two datasets of 91 and 92 sequences, produced by 
the same program fed with the same input and with different PID 
thresholds. The overlap is measured as the percentage of the proteins of the 
smaller dataset that are observed also in the larger dataset. The results 
show that the overlap is in most cases 100%. Although in few cases this 
value is slightly smaller than 100%, it is never smaller than 96%. 
 
Alternatively, this can be described as the invariance of the output content 
on the progressive strengthening of the non-redundancy threshold: if the 
PID threshold is made more stringent, for example by lowering it from 
50% to 40%, the sequences that are retained in the 40% non-redundant 
output were already present in the 50% output. This can be explained by 
the fact that the number of sequences in the output is dependent of the 
percentage of identity threshold defined by the user but the selection of the 
cluster representatives is independent of that same threshold. 
 
Overlap between different computer programs: 
A crucial issue is the comparison between the outputs of different 
programs fed with the same input dataset and the same PID threshold 
value. The overlap between two non-redundant datasets is measured as the 
percentage of proteins of the smaller dataset that are found in the larger 
dataset. Table 5 shows the overlap values between different programs and 
for the same threshold values. The average overlap is around 90%, ranging 
from 88% to 100%.The discrepancy between the results shown in Table 5 
can be explained by several facts; first, different programs use different 
alignment algorithms – this particularly refers to SkipRedundant which 
uses global alignment while the others use local alignment; second, even if 
two or more programs use the same alignment algorithm, the fine tuning of 
the algorithm can be different; third, the selection of cluster representatives 
is done in different ways, depending on the clustering algorithm.  
 
An example of overlap of four non-redundant datasets, each obtained with 
a different program, based on the same input dataset and the same PID 
threshold, is given in Figure 2. This figure supports the findings that the 
non-redundant sets obtained by different programs fed with the same input 
dataset and maximum PID have a considerable degree of similarity in size 
and content.  
 
Conclusion: 
A large scale comparison of various computer programs that are commonly 
used to remove redundancy from protein sequence databases has been 
performed. Different computational approaches clearly produce slightly 
different results. If this is not completely unexpected, since several 
differences are observed in all these algorithms, it is nevertheless 
intriguing. The preference for a program is largely dependent on technical 
issues like the availability of a simple and user friendly stand alone 
executable, which is particularly attractive for large scale studies, rather 
than the availability of a web based server, which eliminate the problems 
to install local copies of the software. Most of the bioinformaticians 
assume that redundancy reduction is a routine and simple step, which can 

be performed with any of the available programs. However, we have 
documented that the lists of non-redundant protein sequences outputted by 
different programs are different, even when the redundant input set of 
sequences is the same and the threshold of percentage of sequence identity 
is the same. Discrepancies up to about 10% are quite common. 
 
This does not indicate that these computer programs have difficulties in 
removing the redundancy. In fact, all of their outputs are more than 
acceptable in terms of residual similarity between the entries that are 
grouped in the outputs. However, this clearly suggests that a good practice 
in bioinformatics should be the use of more than one computer application 
for removing redundancy from protein sequence ensembles. In this way, all 
the computations would be done in parallel by using two or more non-
redundant sets of sequences and the comparison of the final results of the 
computations would reinforce their intrinsic value, a sort of precaution to 
avoid possible biases and mistakes. It is eventually important to point out 
that it is impossible to rank the different programs according to the quality 
of their outputs. To do it, it would be necessary to have a benchmark 
dataset, which can be produced only by using the same programs that we 
compared. Any other benchmark, constructed with human intervention, 
would be biased by subjectivity. 
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Supplementary material: 
 
Table 1: List of the computer programs with their URLs. 
Program Version URL 

Decrease Redundancy N/A http://www.expasy.org/tools/redundancy  
cd-hit 3.1.1 http://www.bioinformatics.org/cd-hit 

Pisces N/A http://dunbrack.fccc.edu/PISCES.php  
BlastClust (BLAST) 2.2.16 http://blast.ncbi.nlm.nih.gov  

SkipRedundant (EMBOSS) 6.2.0 http://emboss.sourceforge.net 

 
Table 2: Summary information on the datasets (nres indicates the number of residues). 

Dataset name Dataset content 
D_100_0 100 sequences with  nres  ≤ 100 
D_100_100 100 sequences with 100 < nres ≤ 200 
D_100_200 100 sequences with 200 < nres ≤ 300 
D_100_300 100 sequences with 300 < nres ≤ 400 
D_100_400 100 sequences with 400 < nres ≤ 500 
D_100_500 100 sequences with 500 < nres ≤ 600 
D_100_600 100 sequences with 600 < nres ≤ 700 
D_100_700 100 sequences with 700 < nres ≤ 800 
D_100_800 100 sequences with 800 < nres ≤ 900 
D_100_900 100 sequences with 900 < nres ≤ 1000 
D_100_1000 100 sequences with nres > 1000 
 
D_1000_0 1000 sequences with nres  ≤ 100 
D_1000_100 1000 sequences with 100 < nres ≤ 200 
D_1000_200 1000 sequences with 200 < nres ≤ 300 
D_1000_300 1000 sequences with 300 < nres ≤ 400 
D_1000_400 1000 sequences with 400 < nres ≤ 500 
D_1000_500 1000 sequences with 500 < nres ≤ 600 
D_1000_600 1000 sequences with 600 < nres ≤ 700 
D_1000_700 1000 sequences with 700 < nres ≤ 800 
D_1000_800 1000 sequences with 800 < nres ≤ 900 
D_1000_900 1000 sequences with 900 < nres ≤ 1000 
D_1000_1000 1000 sequences with nres > 1000 
 
D_10000_0 10000 sequences with nres  ≤ 100 
D_10000_100 10000 sequences with 100 < nres ≤ 200 
D_10000_200 10000 sequences with 200 < nres ≤ 300 
D_10000_300 10000 sequences with 300 < nres ≤ 400 
D_10000_400 10000 sequences with 400 < nres ≤ 500 
D_10000_500 10000 sequences with 500 < nres ≤ 600 
D_10000_600 10000 sequences with 600 < nres ≤ 700 
D_10000_700 10000 sequences with 700 < nres ≤ 800 
D_10000_800 10000 sequences with 800 < nres ≤ 900 
D_10000_900 10000 sequences with 900 < nres ≤ 1000 
D_10000_1000 10000 sequences with nres > 1000 

 
Table 3: The main features of the different computer programs that were used. 

Program name Stand alone 
(OS) 

% sequence identity 
threshold 

Output is dependent 
on the input order Output format 

Decrease Redundancy  No 0 – 100 
(any value) Yes FASTA 

cd-hit Yes (Linux, 
Windows) 

40 – 100 
(any value) Yes FASTA 

Pisces Yes (Linux) 5 - 100 
(any value) No List of identification codes 

BlastClust Yes (Linux, 
Windows) 

0 – 100 
(any value) No List of identification codes 

SkipRedundant Yes (Linux) 0 – 100 
(any value) Yes FASTA 
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Table 4: The percentage of sequences found in the output relative to the input (Ptot). The thresholds of percentage of sequence identity are indicated as 
‘Max PID’. These data are the averages of the results obtained with all datasets. 

Program Max PID 40% Max PID 50% Max PID 75% Max PID 90% 
Decrease redundancy   Ptot = 95%   Ptot = 96%   Ptot = 97 %  Ptot = 99% 
cd-hit   Ptot = 88%   Ptot = 91%   Ptot = 94%  Ptot = 98% 
Pisces   Ptot = 88%   Ptot = 91%   Ptot = 95 %  Ptot = 98 % 
BlastClust   Ptot = 89 %   Ptot = 91%   Ptot = 94%  Ptot = 98 % 
SkipRedundant   Ptot = - *%   Ptot = -*%   Ptot = 60%  Ptot = 68% 

* Despite several attempts, the program reported results containing few clusters which were not further analyzed.  
 
Table 5: Average overlap (standard deviation) between the outputs of different programs observed at different thresholds of sequence identity - Max PID. 
Averages and standard deviations were computed by using all the data sets. 
Max PID 40% Decrease redundancy cd-hit Pisces BlastClust Skip Redundant 
Decrease redundancy 100% 88% (6) 89% (5) 89% (5) N/A 
cd-hit  100% 95% (2) 95% (3) N/A 
Pisces   100% 95% (3) N/A 
BlastClust    100% N/A 
Skip Redundant N/A N/A N/A N/A N/A 
      
Max PID 50% Decrease redundancy cd-hit Pisces BlastClust Skip Redundant 
Decrease redundancy 100% 89% (5) 90% (5)  90% (3) N/A 
cd-hit  100% 96% (2) 94% (1) N/A 
Pisces   100% 97% (1) N/A 
BlastClust    100% N/A 
Skip Redundant     N/A 
      
Max PID 75% Decrease redundancy cd-hit Pisces BlastClust Skip Redundant 
Decrease redundancy 100% 90% (4) 90% (4) 92% (4) 91% (5) 
cd-hit  100% 96% (1) 95% (2) 99% (1) 
Pisces   100% 98% (1) 97% (2) 
BlastClust    100% 97% (2) 
Skip Redundant     100% 
      
Max PID 90% Decrease redundancy cd-hit Pisces BlastClust Skip Redundant 
Decrease redundancy 100% 92% (4) 92% (4) 95% (3) 94% (4) 
cd-hit  100% 95% (1) 96% (1) 99% (1) 
Pisces   100% 98% (1) 97% (1) 
BlastClust    100% 97% (1) 
Skip Redundant     100% 

 
 

 
 


