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Abstract:

Cardiovascular diseases (CVDs) are the leading cause of death and morbidity globally. The renin-angiotensin system is an important
regulatory system for maintaining cardiovascular and renal function. Therefore, angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers have emerged as first-line treatments for conditions such as hypertension and heart failure. Currently
available synthetic medications used to treat various CVDs have been linked with various adverse effects. Therefore, this study focuses
on targeting type-1 angiotensin II receptor (AGTR1) by natural compounds. The ZINC database natural compounds and standard
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AGTRT1 inhibitors have been screened against the AGTR1 active site. The results showed that five compounds, namely ZINC85625504,
ZINC62001623, ZINC70666587, ZINC06624086, and ZINC95486187, had similar binding energies to established AGTR1 inhibitors.
These compounds were found to interact with crucial AGTR1 residues, indicating their potential as AGTR1 inhibitors. Moreover, the
hit compounds demonstrated favorable drug-like characteristics and warrant further investigation for their potential use in managing

CVD.

Keywords: Cardiovascular disease, natural compounds, AGTR1, drug-likeness.
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Background:

Cardiovascular diseases (CVDs) are the primary cause of
mortality and morbidity worldwide [1]. The primary drivers of
the rise in CVDs are urbanization and lifestyle changes. CVD
mortality, mostly due to ischemic heart disease and stroke, has
been declining in high-income nations (Europe, North America,
and Australia) since the late twentieth century, and the trend is
expected to continue, but the pace of decrease has lately slowed.
Nonetheless, the incidence of CVDs is anticipated to rise owing to
the prolonged lifespan of individuals with CVDs, while the
absolute count of CVD fatalities will also increase due to
population aging. Under the assumption of stable major
cardiovascular risk factors, a significant increase in the
prevalence of heart disease or stroke among middle-aged
individuals is expected in the majority of countries, resulting in a
significant number of CVD fatalities in the 35-64 age group over
the next three decades [2,3]. The renin-angiotensin system is an
important regulatory system for maintaining cardiovascular and
renal function. Therefore, angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers have emerged as
first-line treatments for conditions such as hypertension and
heart failure [4]. Here in this study, we focus on targeting type-1
angiotensin II receptor (AGTR1) among the several potential

druggable targets. The activation of the AGTR1 receptor by
angiotensin II results in vasoconstriction, sodium retention, and
oxidative stress, all of which contribute to the development of
hypertension, heart failure, and other CVDs [5]. AGTR1 blockers
are a class of drugs that inhibit the activation of AGTRI1
selectively, thereby reducing the negative effects of angiotensin
II. These medications are commonly used to treat hypertension,
heart failure, and other CVDs. Multiple studies have
demonstrated that targeting AGTR1 can reduce the incidence of
cardiovascular events. Targeting the AGTR1 with drugs such as
losartan, valsartan, and irbesartan has been demonstrated to be
an effective CVD management strategy [6]. Shreds of evidence
from literature and protein-protein interaction analysis of AGTR1
with other proteins show that it interacts with several proteins.
Numerous protein-protein interaction databases show how
AGTR1 interacts with other proteins. For instance, the IntAct
database, an open-source molecular interaction database, predicts
interactions of AGTR1 with 92 proteins using data either selected
from the literature or through direct data depositions [7]. The
BioGRID database, a freely accessible repository for genetic and
protein interaction information from model organisms and
people, has 104 interactors [8] (Figure 1).
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Figure 1: Interaction of AGTR1 with other proteins. Predicted by IntAct database (A), and BioGRID database (B).
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There are several known inhibitors/blockers of AGTR1 for
example; Losartan, Valsartan, Irbesartan, Candesartan,
Telmisartan, Olmesartan medoxomil, and Azilsartan medoxomil .
Several currently available synthetic medications used to treat
various CVDs have been linked with a number of adverse effects.
Consequently, natural compounds have gained popularity in the
modern era due to their low cost, easy availability, high
effectiveness, and fewer side effects.

Methodology:

Preparation of standard inhibitors and natural compounds
library preparation:

This study utilized a carefully selected collection of natural
compounds sourced from the ZINC database. The compounds
were filtered using the ‘Lipinski and Veber Rule’ and were
chosen to have molecular weights within the range of 300 to 500.
The resulting curated library contained a total of 350 compounds.
These compounds were minimized and prepared in pdbqt format
for further docking analysis. ZD7 (co-crystal ligand), candesartan,
losartan, and valsartan, all well-known inhibitors of AGTRI1,
were prepared for docking analysis as a positive control for the
screening.

Target protein (AGTR1) preparation for docking analysis:

The 3D structure of AGTR1 was obtained from the RCSB PDB
(PDB ID: 4YAY) [9]. The structure is asymmetric and monomeric
having a co-crystallized ligand ZD7. Water, heteroatoms, and co-
crystallized ligands were eliminated, and the protein was cleaned
and processed with DS before being saved as a “.pdb’ file for
virtual screening (VS)/docking purposes.

Structure based virtual screening:

The PyRx program was used to perform VS of prepared natural
compounds and standard inhibitors against the active site of
prepared target proteins [10]. The docked complexes were
subsequently assessed using DS Visualizer and Pymol, and the
ideal conformation was determined based on the lowest binding
energy.

Physicochemical properties, ADME, and toxicity prediction:
Physicochemical properties, ADME, and toxicity estimation were
predicted for the top 20 screened compounds. The
physicochemical characteristics and pharmacokinetic profile of a
therapeutic substance, which includes absorption, distribution,
metabolism, excretion, and toxicity (ADMET), are crucial in
determining its pharmacodynamic properties. The "ADMET
Descriptor" module in DS was used to calculate the ADMET
characteristics of the phytochemicals. The "TOPKAT" module in
DS was used to evaluate toxicity.

Table 1: Binding energy of top 20 screened compounds and
positive controls.

Ligand Binding energy
(kcal/mol)

ZINC06624086 -11.2

ZINC95486187 -10.6

ZINC19804810 -10.3

ZD7 -10.2

Candesartan -10.1

©Biomedical Informatics (2023)

ZINC62001623 -10.1
ZINC70666587 -9.9
ZINC85625504 -9.9
ZINC06624236 -9.9
ZINC02109240 -9.9
ZINC96113966 -9.8
ZINC02109241 -9.8
ZINC02145358 -9.7
ZINC32502206 -9.7
ZINC02119331 -9.7
ZINC20611818 -9.6
Losartan 9.5
ZINC08918025 -9.5
ZINC32124198 -9.4
ZINC32124036 -9.1
Valsartan -8.9
ZINC19804812 -89
ZINC32124056 -8.9
ZINC20760145 -89
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Results and Discussion:

In this study, we selected four positive controls namely, ZD7 (co-
crystal ligand), candesartan, losartan, and valsartan which are
widely known inhibitors of AGTR1. A curated database of 350
natural compounds obtained from the ZINC database was
screened against the active site of AGTR1. These compounds
were filtered using the 'Lipinski and Veber Rule' and had
molecular weights within the range of 300 to 500. A grid of XYZ
axes was set up for the molecular docking-based VS (X=-16.087,
Y=9.764, and Z= 41.290). The screening results revealed that
several compounds had higher binding energies when compared
to control compounds (Table 1), but after in-depth analysis and
visualization of the docked complexes' 2D and 3D interactions, 16
compounds demonstrated more effective binding in terms of
interaction with critical AGTR1 residues such as THR260. Here
we discussed and demonstrated the top 5 natural compounds as
potential hits. ZINC85625504 interacted with Tyr113, Tyrl84,
Leul12, Phe204, Pro192, Gly203, Gly196, Lys199, Val264, Lys199,
His256, Thr260, Trp253, GIn257, 1le288, Phe261, and Asn200
residues of AGTR1. Residues Pro192, Lys199, His256, Thr260, and
Asn200 H-bonded with ZINC85625504  (Figure 2A).
ZINC62001623 bind with Tyr184, Phel82, Leul95, Pro192, Val264,
GIn267, Met284, Asp263, Trp253, His256, Thr260, GIn257, Asn200,
Phe204, Gly203, Leul12, Tyr113, and Lys199 residues of AGTR1.
Residues Thr260, and Lys199 H-bonded with ZINC62001623
(Figure 2B). ZINC70666587 interacted with Tyrl84, Phel82,
Leul95, Pro192, Val264, GIn267, Met284, Asp263, His256, Trp253,
Thr260, GIn257, Asn200, Phe204, Gly203, Leull2, Tyrl13, and
Lys199 residues of AGTRI1. ZINC70666587 H-bonded with
Lys199, and Thr260 residues of AGTR1 (Figure 2C). In addition,
ZINC06624086 interacted with Phel82, Lys199, Tyr184, Pro192,
Gly196, Asn200, Val264, His256, Trp253, Thr260, nad GIn257
residues of AGTRI. Residue Thr260 H-bonded with the
ZINC06624086 (Figure 2D). ZINC95486187 bind with Phel82,
Tyr184, Argl67, Met284, His256, Thr260, 11288, Trp253, GIn257,
Lys199, Asn200, Phe204, Gly203, Gly196, Tyr113, and Leull2
residues of AGTR1. Residues Argl67, His256, and GIn257 H-
bonded with ZINC95486187 (Figure 2E). The residues Leull2,
Lys199, Asn200, Trp253, His256, GIn257, and Thr260 in AGTR1
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ZINC95486187) have been observed to bind with these AGTR1

is noteworthy that the compounds (ZINC85625504, residues.
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Figure 2: Interaction of best 5 hits with the active site residues of AGTR1.

Furthermore, the interaction profile of positive controls with
AGTR1 protein was analyzed. Candesartan interacted with
Thr184, Pro192, Val264, GIn267, Asp263, Met284, Trp253, His256,
Thr260, GIn257, Asn200, Phe204, Gly203, Leul12, Tyr113, Lys199,
Phel82, and Leul95 residues of AGTR1 (Figure 3A); while
Leul12, Gly203, Phe204, Asn200, GIn257, His256, Thr260, Trp253,
Val264, Pro192, GIn267, Phel82, Leu195, Tyr184, Prol62, Lys199,
and Tyr residues interacted with ZD7 (Figure 3B). Losartan
interacted with Thr260, GIn257, Asp263, GIn267, Tyr184, Val264,
Pro192, Phel82, Prol62, Tyr113, Lys199, Leul12, Gly203, Phe204,
Trp253, His256, and Asn200 residues of AGTR1 (Figure 3C). In
addition, valsartan interacted with Thr260, His256, Argle6?,
11e288, Met284, GIn267, Asp263, Tyrl84, Val264, Gly196, Lys199,
Tyr113, Leull2, Gly203, Phe204, Trp253, Asn200, and GIn257
residues of AGTR1 (Figure 3D). It is worth noting that Thr260
was identified as the common H-bonded residue of the AGTR1
protein  with the Thits (ZINC85625504, ZINC62001623,
ZINC70666587, and ZINC06624086) as well as the positive
controls (candesartan, ZD7, losartan, and valsartan) (Figure 2A-D
& Figgure 3A-D).

The physicochemical, ADME, and toxicological features of the
top 20 natural compounds were investigated. Since the screened
library had already been filtered by the 'Lipinski and Veber Rule'
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and had molecular weights ranging from 300 to 500, most of the
screened compounds were nontoxic. According to TOPKAT and
ADMET forecasts, few of the chemicals are carcinogenic and the
majority of the compounds are not mutagenic (Table 2).

Conclusion:

This study utilized computational methods including structure-
based VS, ADME, and interaction analysis to identify compounds
(ZINC85625504, ZINC62001623, ZINC70666587, ZINC06624086,
and ZINC95486187) that can bind to the AGTR1 protein, a target
for therapies for CVDs. These compounds also exhibited
favorable drug-like characteristics, indicating their potential as
candidates for treating CVDs.
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Figure 3: Interaction of positive controls with the active site residues of AGTR1.

Table 2: Physicochemical, and ADME properties of top 20 hits.
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