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Abstract: 
The progression of lung cancer is associated with inactivation of programmed cell death protein 1, abbreviated as PD- 1 which regulates 
the suppression of the body’s immune system by suppressing T- cell inflammatory activity and is responsible for preventing cancer cell 
growth.  It is of interest to identify inhibitors for PD-L1 dimeric structure through molecular docking and virtual screening. The virtual 
screened compound XGIQBUNWFCCMAS-UHFFFAOYSA-N (PubChem CID: 127263272) displays a high affinity with the target protein. 
ADMET analysis and cytotoxicity studies further add weight to this compound as a potential inhibitor of PD-L1. The established 
compound BMS-202 still shows the high re-rank score, but the virtual screened drug possesses a better ADMET profile with a higher 
intestinal absorption value and lower toxicity. 
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Background: 
There are 8.8 million recorded deaths of malignant cancer every 
year according to WHO data and this number keep on increasing 
which is a clear indication of the threat this disease poses. Studies 
in the past decade have confirmed that the immune system 
displays a variety of mechanisms to combat the growth of cancer 
cells in the body. Hence, in order for the cancer cells to grow and 
develop, the cells have to find ways to repress these immunological 
mechanisms. One such mechanism used is altering the expression 
of co-inhibitory and co-stimulatory articulated molecules [1]. 
Cancer immunotherapy is increasingly being used in recent clinical 
treatments in order to overcome tumor-
inducedimmunosuppression. Immune checkpoint blocking (ICB) 
antibodies targeting programmed death protein 1 (PD-
1)/programmed cell death ligand 1 (PD-L1) and cytotoxic-T-
lymphocyte-associated protein 4 (CTLA4) clinically prove that 
treatment is possible through immunity modulation [2]. 
 

Programmed cell death protein 1, abbreviated as PD- 1, is a 
regulatory protein involved in the suppression of the body’s 
immune system by suppressing T- cell inflammatory activity. It is 
present on the cell surface and helps in the prevention of 
autoimmune diseases. But this protein can also help the cancer cells 
by preventing them from getting killed by the immune system. PD-
1 shows an affinity towards two proteins of the B7 family: PD-L1 
(B7-H1, CD274) and PD-L2 (B7-DC, CD273). When PD-1 expressed 
on T cells interacts with its two ligands, its functional activities are 
reduced, including cytokine secretion, proliferation, and cytolytic 
activity [3]. This ligand interaction down regulates the T- cell 
response during the growth of the tumor. Clinical studies of cancer 
cells have shown elevated levels of PD- L1, which proves that the 
cancer cells abuse this feature. 
 
Until now, monoclonal antibodies such as Nivolumab and 
Pembrolizumab (which bind to PD-1) and Avelumab and 
Durvalumab (which bind to PD- L1) have gained the U.S. Food and 
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Drug Administration acceptance other than several others which 
are in various phases of trials. The antibodies approved are directed 
against metastatic non-small-cell lung cancer (NSCLC), melanoma, 
and renal cell carcinoma. The development of small molecules that 
are targeted towards the inhibition of this interaction is lagging as 
compared to the development of monoclonal antibodies. Small 
molecules for the same resolution could offer many advances that 
might be complementary and potentially better than large 
biological molecules [4]. For example, small-molecule drugs can be 
directed towards intracellular targets which are inaccessible to 
protein therapeutics. They can be orally administered and gave the 
potential to reach high exposure levels inside the tumor micro-
environment. Moreover, these can be prepared at lower costs as 
compared to antibodies. 
 
A series of small molecules targeting the PD-1/PD-L1 interaction 
have been reported [4-6]. Bristol-Myers Squibb (BMS) recently 
disclosed the first non-peptidic small molecule inhibitors against 
the PD-1/PD-L1 pathway that highlighted the activity in a 
homogeneous time-resolved fluorescence (HTRF) binding assay [7-
8]. It has been shown that these compounds bind directly to PD- L1, 
not to PD-1 and dissociate the PD-1/PD-L1 complex in vitro. 
Further, it has also been confirmed that these molecules inhibit the 
PD-1/PD-L1 interaction by inducing PD-L1 dimerization through 
PD-1 interacting surface. Besides BMS series, other peptides and 
peptido-mimetics have been discovered by Aurigene researchers 
with interactions in mouse splenocyte proliferation assays, human 
peripheral blood mononuclear cell (PBMC) proliferation assays, 
IFNg production in a CTL assay, and inhibition of tumor growth 
after subcutaneous injection of mouse melanoma cells into mice. 
Extensions of these studies toward cyclo-peptide inhibitors of the 
complex formed were detailed in another recent patent from 
Aurigene with both open-chain and cyclized derivatives [9]. 
Furthermore, tripeptide peptido mimetics including 
diacylhydrazine and urea linker moieties and peptides contain the 
diacylhydrazine and urea linkers with broader variations of the 
amino acid building blocks have been put forward by Aurigene in 
another patent [10]. Taking the concept further, the Aurigene 
synthesized oxadiazole and thiadiazole moieties into the core chain 
of the peptide backbone [11-12]. Owing to the fact that the 
development of these small molecule inhibitors is relatively 
lacking, the present study aims to identify a potential small 
molecule inhibitor, which binds with PD-L1 with high affinity and 
can hence be carried for further trials for the clinical treatment of 
lung cancer. Therefore, it is of interest to identify inhibitors for PD-
L1 dimeric structure through molecular docking and virtual 
screening. 
 

 
Figure 1: Established Inhibitors of PD- L1 which do not have 
PubChem ID with references 
 
Materials and Methods: 
Selection of PD-L1 inhibitors: 
Literature studies were carried out to search for established 
inhibitors of PD-L1 ligand, which were capable of binding and 
hence inhibiting the activity of the protein. The total number of 
established inhibitors was found to be 311, which were chosen for 
further analysis. Out of the 311 small molecule inhibitors, only one 
was found to have a PubChem ID (Table 1) while the structures of 
others were not available. The 3D structures of all these compounds 
were constructed using MarvinSketch and were saved in the 3D.sdf 
format (Figure 1). 
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Protein and ligand Preparation: 
The protein 3D structure or the crystal structure of the target 
protein i.e. the PD-L1 dimer was taken from the Protein Data Bank 
(PDB) with the PBD ID: 5J8O [20]. This structure was saved for 
docking (Figure 2). Furthermore, ligand preparation was done by 
utilizing the 3D structures of all the constructed as well as the 
retrieved ligands which were embedded in the LigPrep module of 
Schrodinger suite, 2013 (Schrodinger. LLC, New York, NY) and 
were optimized with the help of the OPLS 2005 force field 
algorithm [21-26]. This preparation gave the ligands in a single file, 
which was saved with a .sdf extension for docking with the protein 
crystal structure [27-31]. 
 
Molecular docking: 
The molecular docking investigations were carried out by using 
Molegro Virtual Docker (MVD) which unified with high potential 
Piece-Wise Linear Potential (PLP) and MolDock scoring function 
[32-35]. The single ligand file prepared in the previous section was 
used.  Protein preparation was carried out by removing the pre-
existing ligand form the protein structure. Before removing the 
ligand, the cavity in which the ligand existed was seen. Cavity one 
was observed to have the largest volume and the presence of the 
ligand and was hence chosen for docking of the prepared ligands. 
Docking procedure holding parameter of maximum iteration of 
1500, grid solution 0.2 having a binding affinity, maximum 
population size 50, the protein and ligands were assessed on the 
subsequent confirmation of the Internal Electrostatic interaction 
(Internal ES), sp2-sp2 torsions, and internal hydrogen bond 
interaction [36-42]. The binding site outlined the first cavity 
according to high volume. A post dock study comprised of energy 
minimization and H-bond optimization. Placing of Simplex 
Evolution at max steps 300 and neighbour distance faster 1.00 [43-
47]. After docking to minimize the complex energy of ligand-
receptor interaction the Nelder Mead Simplex Minimization (using 
non- grid force field and H-bond directionality) was used [48-51]. 
 
Virtual screening: 
The compound with PubChem ID of 117951478 which is BMS- 202 
was used to carry out a similarity search to attain a better 
compound having a greater binding affinity to the dimer structure 
other than any previously established drugs [52-57]. The similarity 
searching was carried out against the PubChem database 
developed by NIH, one of the public chemical repositories which 
consist of structures of 93 million chemical compounds. The 
filtrations property parameter set by the component rule of 
Lipinski’s rule of five was set at threshold >=95 [58-64]. A similar 
similarity searching was carried out against the ZINC database 
which has especially been designed for virtual screening purposes. 

These compounds were then docked with the same procedure with 
the target protein PD-L1 to discover the compound having 
surpassed binding affinity to the protein. 
 

 
Figure 2: 3D structure of PD- L1 dimer (PDB ID: 5J8O) generated 
using Discovery Studio.  
 
Drug-Drug Comparative Study: 
The “unnamed complex” structure file generatedin the established 
drug docking result folder and was opened in Molegro Virtual 
Docker. All the constraints, cavities and ligands in the structure 
were removed to obtain only the protein structure [33, 37, 40]. The 
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best pose of the drug was then imported and the structure 
generated was saved as the best-posed drug and was saved in PDB 
format. Similarly, the “unnamed complex” structure file was 
retrieved from the virtual docking result and the steps were 
repeated to obtain the best virtual screened drug pose [65-72]. An 
excel sheet was organized to check and compare all the affinities, 
hydrogen interaction, steric energy and high re-rank score to draw 
out a comparison between the two drugs [73-79]. 
 
ADMET studies: 
The admetSAR database available at http://lmmd.ecust.edu.cn 
:8000/ offers an open and free interface to search for the biological 
and chemical profile of a compound. The properties mentioned in 
the ADMET profile such as digestion, absorption, metabolism, 
toxicity, excretion and so on, provide us with essential information 
related to the development and discovery of drugs. The admetSAR 
database mostly consists of 22 qualitative classifications and 5 
quantitative regression models, which aid in providing the 
outcome with high precision based on the prediction. Hence the 
estimation of the properties of the compounds was predicted using 
admetSAR. The properties of the established compound and virtual 
screened compound such as the bioactivity properties and toxicity 
were predicted by using admetSAR [33, 37, 40]. 
 
Software, Suites and web servers used: 
The 3D chemical structures were retrieved from NCBI’s PubChem 
database in 3DSDF format. Some compounds that lack PubChem 
ID or the 3D structure was unavailable in PubChem were drawn 
with the help of MarvinSketch5.6.0.2, (1998-2011, ©Chem 
AxonLtd).  Schrodinger suite was used for the optimization of 
ligands (Schrodinger, LLC, 2009, New York, NY). The flexible 
docking was achievedby taking receptor protein structure and all 
ligand compounds in Molegro Virtual Docker 2010.4.0.0. Molecular 
Visualization was done with the assistance of Accelrys Discovery 
Studio® Visualizer 3.5.0.12158 (© 2005-12, Accelrys Software Inc.). 
ADMET profiles were obtained and tabulated using admetSAR 
(Laboratory of Molecular Modeling and Design, © 2012 East China 
University of Science and Technology, Shanghai Key Laboratory for 
New Drug-Drug Design). Cytotoxicity study was conducted using 
CLC-Pred (Way2Drug © 2011 – 2018). 
 
Cytotoxicity studies: 

In silico studies require methods of phenotypic screening to 
decrease the time as well as the cost of the experiments that would 
be conducted in vivo for the screening of anticancer agents through 
millions of natural and synthetic chemical inhibitors. Previously 
established PASS (Prediction of Activity Spectra for Substances) 
algorithm was used to produce and confirm the classification SAR 
models for calculating and predicting the cytotoxicity of inhibitors 
against varying kinds of human cell lines using ChEMBL 
experimental data. By utilizing the provided SAR models, a freely 
available web-service was developed for cell-line cytotoxicity 
profile prediction (CLC-Pred: Cell-Line Cytotoxicity Predictor) 
based on their structural formula. This webservice resides 
athttp://way2drug.com/Cell-line/. After the input is provided in 
the web service, probabilities are given in the form of ‘Pa’ 
(probability "to be active") which gives the estimate chance of the 
input compound fitting into the sub-class of active compounds, and 
Pi (probability "to be inactive") which gives the estimate chance of 
the input compound belonging to the sub-class of inactive 
compounds. 
 
Result & Discussion: 
Docking results: 
The docking results of the pre-established 311 drugs established 
BMS-202 as the compound showing the best interaction (Table 2). 
This compound has PubChem CID-117951478 and shows the 
highest affinity score directed towards our target protein and has 
properties such as molecular weight of 419.525 g/mol, hydrogen 
bond donor count of 2 and hydrogen bond acceptor count of5. The 
logP value is established at 3.6. Hence, this compound discloses 
greater inhibition over protein PD- L1. Similarity searching for this 
inhibitor resulted in two similar compounds against PubChem. 
Table 3 shows the docking result of these two virtual screened 
compounds. The table shows that the compound 
SCHEMBL19100243 (PubChem CID- 127263272) has the highest 
affinity. This compound has a molecular weight of 455.983 g/mol, 3 
hydrogen bond donors, and 5 hydrogen bond acceptors. Similarity 
searching against ZINC database displayed 468 similar compounds 
with a compound with Zinc ID ZINC22037432 showing the highest 
affinity with the PD- L1 structure (Table 4). This compound has a 
molecular weight of 372.493, 2 hydrogen bond donors, 7 hydrogen 
bond acceptors, and a logP value of 1.13. 
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Table 1: Established Inhibitors of PD- L1 with PubChem ID and properties. 
S. No. Pub ID Inhibitor M.W. (gm/mol) Molecular formulae H-Bond donors H-bond acceptors LogP Reference 
1 117951478 BMS-202 419.525 g/mol C25H29N3O3 2 5 3.6 [11][12] 
 
 
Table 2: Established drug docking result 
Ligand Filename MolDock Score Rerank Score Interaction HBond 
117951478 [00] 11795147 -208.769 -173.766 -226.856 -5.23353 
BMS 198 [00] BMS 198 -208.811 -171.797 -223.056 -2.85593 
BMS 200 [02] BMS 200 -206.678 -167.818 -232.812 -5.11928 
BMS 210 [00] BMS 210 -200.425 -166.787 -215.127 -3.76733 
BMS 211 [00] BMS 211 -198.373 -166.546 -221.891 -5.44791 
BMS 193 [00] BMS 193 -214.196 -166.093 -239.793 -2.32188 
BMS 170 [01] BMS 170 -208.403 -164.463 -252.144 -1.06538 
BMS 211 [01] BMS 211 -192.452 -164.362 -219.261 -2.10384 
BMS 225 [00] BMS 225 -199.605 -163.26 -215.509 -3.68641 
BMS 199 [00] BMS 199 -205.856 -163.117 -228.566 -0.42034 
 
Table 3: Virtual screened drugs docking result with reference to high-affinity BMS- 202 against PubChem 
Ligand Filename MolDock Score Rerank Score Interaction HBond 
127263272 [00]127263272 -193.261 -151.74 -225.408 -4.52206 
126843234 [00]126843234 -178.19 -146.264 -199.562 -2.24356 
127263272 [02]127263272 -180.754 -145.388 -211.309 -0.54806 
126843234 [01]126843234 -174.74 -144.189 -199.801 -2.31062 
126843234 [03]126843234 -169.764 -144.102 -199.117 0 
126843234 [02]126843234 -176.053 -140.85 -199.719 -0.92555 
127263272 [03]127263272 -176.215 -140.061 -195.578 -0.07669 
127263272 [01]127263272 -177.071 -136.306 -201.379 -1.36358 
127263272 [04]127263272 -167.671 -135.862 -200.165 -0.54703 
126843234 [04]126843234 -164.291 -112.76 -185.444 -4.55516 
 
Table 4: Virtual screened drugs docking result with reference to high-affinity BMS- 202 against Zinc 
Ligand Filename MolDock Score Rerank Score Interaction HBond 
ZINC22037432_1 [00] ZINC22037432_1 -178.601 -143.428 -193.535 -2.5 
ZINC01846354 [00] ZINC01846354 -179.375 -143.28 -180.818 -3.95799 
ZINC00000101 [00] ZINC00000101 -178.673 -141.842 -179.504 -5.55762 
ZINC22037436_1 [00] ZINC22037436_1 -169.848 -136.653 -185.571 -3.464 
ZINC14684103 [00] ZINC14684103 -176.619 -135.147 -176.894 -0.08033 
ZINC04652360 [00] ZINC04652360 -174.342 -134.726 -168.606 0 
ZINC22037432_1 [03] ZINC22037432_1 -166.457 -134.52 -185.326 0 
ZINC33844575 [02] ZINC33844575 -164.016 -134.485 -168.029 -0.49184 
ZINC72266866 [01] ZINC72266866 -150.726 -133.76 -176.745 -0.13166 
ZINC42479148 [00] ZINC42479148 -166.813 -132.496 -167.666 -7.91148 
 
Table 5: Drug-Drug comparative study 
 Virtual Screened Drug CID: 127263272 Established drug CID:117951478 
Energy overview: Descriptors MolDock Score Rerank Score MolDock Score Rerank Score 
Total Energy -193.236 -151.724 -200.215 -161.944 
External Ligand interactions -225.405 -188.661 -226.851 -191.146 
Protein - Ligand interactions -225.405 -188.661 -226.851 -191.146 
Steric (by PLP) -220.879 -151.523 -221.615 -152.028 
Steric (by LJ12-6)  -33.554  -34.971 
Hydrogen bonds -4.526 -3.584 -5.236 -4.147 
Internal Ligand interactions 32.169 36.937 26.636 29.202 
Torsional strain 20.749 19.463 12.76 11.969 
Torsional strain (sp2-sp2)  3.801  3.798 
Hydrogen bonds  0  0 
Steric (by PLP) 11.42 1.964 13.876 2.387 
Steric (by LJ12-6)  11.71  11.048 
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Drug-drug comparative result: 
Table 5 gives an account of the MolDock and re-ranks scores of the 
best-posed drug and the virtual screened drug when docked with 
the dimeric structure of the PD-L1 protein structure, along with 
other important parameters. It is noteworthy here that the total 
energy of BMS-202 inhibitor interacting with the PD-L1 dimeric 
structure is better when compared to the entire virtual screened 
compounds with preferable affinity but the difference in the 
interaction energies is minimum. However, it is surprising to note 
that interaction scores of the virtual screened drug (CID: 
127263272), such as External Ligand interactions as well as protein-
ligand interactions, lie very close to the corresponding scores of the 
established drug BMS- 202 (CID: 117951478). A similar observation 
is made in case of steric interactions by PLP and LJ12-6. The 
difference observed when comparing these parameters is quite 
small. However, the established drug does show higher stability 
based on hydrogen bonds when compared to the virtual screened 
drug. Based on these observations, it can be said that the virtual 
screened drug puts forward a strong case in favour of this 
compound showing as effective inhibitory properties as compared 
to the established drug, if not better, towards the target protein PD-
L1. 
 
Pharmacophore mapping: 
Pharmacophore mapping helps to provide necessary spatial 
systematic topographies of molecular interaction with a particular 
target receptor other than the technique of molecular docking. 
Pharmacophore studies deliver an accurate query on the optimum 
interaction of the drug with its target protein, assisted by 
annotations and denote the aligned poses of the molecule and aid 
us to find the high interaction mode between target protein and 
compound. As the interaction of the receptor PD-L1 and the drug 
with virtual screened drug PubChem CID-127263272, is found to be 
quite effective, pharmacophore studies are carried out to study 
various interactions presented in the complex formed. The various 
interactions that were mapped consisted of hydrogen bond 
interactions, van der walls (vdW) interaction, ligand interactions. 
Figure 3 highlights the hydrogen bond interaction of the pre-
existing, established compound BMS-202 with PubChem CID: 
127263272 outlining high-affinity score interposed the active site of 
the dimeric structure of PD-L1 receptor protein. Tiny blue dotted 
lines show hydrogen bond interaction of specific amino acids in the 
receptor, with the drug when the most stable complex is formed. 
The figure displays that three amino acids viz. Glycine 120, 
Phenylaniline 19 and aspartic acid 122 form hydrogen bonds with 
the virtual screened drug. 
 

 
Figure 3: The Virtual Screened Drug CID: 127263272, the most 
effective drug shows hydrogen bond interactions. 
 
The illustration in Figure 4 displays the interaction of the residues 
with high-affinity drug PubChem CID: 127263272embedded in the 
receptor. The green circles represent van der Waals interaction and 
the residues highlighted in the pink circles are the ones that show 
electrostatic interactions. A green arrow and blue arrows between 
residues and ligand highlight Hydrogen bond interaction. It can be 
seen from Figure 4 the residues Phe B:19 and Asp B:122 represents 
the hydrogen bond formation in the complex formed. As shown in 
the figure in the high- volume cavity of the dimeric structure of PD-
L1, the inhibitor reveals a green arrow to Phe B: 19 which focuses 
drug as the hydrogen bond donor. Accordingly, it can be seen that 
many of the residues show van der Walls interaction with the drug. 
Val B:55, Asp A:122, Ile B:54, Ala A:121, Ser B: 117, Ile A:116, Phe 
A:67, Val A:68, Ile A:54, Ala B:18, Gly B:120, Tyr A:56, Tyr B:123, Ser 
A:117, Met B:115, Ile B:116, Tyr A:123, Tyr B:56 can be seen to have 
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van der Walls interactions. Furthermore, pi-pi interaction between 
the residue Tyr A:56 and the compound and pi- sigma interaction 
between Asp B:122 and the compound can be observed. Figure 5 
portrays the compound PubChem CID: 127263272 in the active 
binding site of protein PD-L1 with H-bond interactions. 
Interactions are indicated by black dotted lines, clearly visible in the 
figure between the drug and Glycine 120, Phenylaniline 19 and 
aspartic acid 122 in the protein cavity. 
 

 
Figure 4: The Virtual Screened Drug CID: 127263272, the most 
effective shows van der Waals interactions. 
 
ADMET profile 
Table 6 summarizes the ADMET prediction of both the best-docked 
compound PD1-PDL1 inhibitor PubChem CID: 117951478 and 
XGIQBUNWFCCMAS-UHFFFAOYSA-N PubChem CID: 127263272. It can 
be seen that the ADMET profiles of both these compounds are 
approximately equivalent in some parameters, while in others the virtual 
screened compound presents better figures. Observations from the table 
show that brain penetration prediction that is Blood Brain Barrier (BBB), 
shows a positive result (+) which indicates that it is positive for absorption. 
Human Intestinal Absorption (HIA), which is the prediction of absorption 
of the drug in the intestine, shows a very slightly higher probability in case 
of the virtual screened drug as compared to the established drug. The P-
glycoprotein Substrate and P-glycoprotein Inhibitor predictions of both the 
compounds display an alternating similar probability. The absorption site 
for the P-glycoprotein substrate for compound PD1-PDL1 inhibitor reveals a 
higher probability than XGIQBUNWFCCMAS-UHFFFAOYSA-N. 
Conversely, P-glycoprotein Inhibitor shows the values with high probability 

in the case of XGIQBUNWFCCMAS-UHFFFAOYSA-N. In addition to the 
distribution of subcellular localization in both the compounds are 
mitochondria. The mitochondrial distribution, both the compounds shows 
the distribution in very close proximity to each other. Metabolism 
predictions vary in points like CYP450 3A4, CYP450 2C9 Inhibitor, CYP450 
3A4 Inhibitor, CYP450 2C19 Inhibitor, and CYP450 3A4 Inhibitor with both 
the compounds acting as substrate as well as the inhibitors. Both the 
compounds display comparable high inhibitory effect towards the target 
protein. Further study of bioactivity in the profile of toxicity is almost 
equivalent. Table 7 summarizes the comparison of the regression prediction 
of ADMET analysis of the two drugs under consideration. The regression 
model shows that the virtual screened drug has a higher CaCo2 
permeability in regression studies. Toxicity studies show almost equivalent 
values with the model categorized in Rat Acute Toxicity, Fish Toxicity and 
Tetrahymena Pyriformis Toxicity. 
 

 
Figure 5: The Virtual Screened Drug CID: 127263272, the most 
effective drug in the active site of the protein with ligand 
interactions  
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Table 6: ADMET predicted profile (classification analysis) 
  PD1-PDL1 inhibitor 

Established drug (BMS-202) 
CID:117951478 

XGIQBUNWFCCMAS-
UHFFFAOYSA-N Virtual 
Screened Drug CID: 127263272 

Model Result Probability Probability 
Absorption    
Blood-Brain Barrier BBB+ 0.6472 0.7091 
Human Intestinal Absorption HIA+ 0.9776 0.9935 
Caco-2 Permeability Caco2+ 0.5102 0.5251 
P-glycoprotein Substrate Substrate 0.862 0.8376 
P-glycoprotein Inhibitor Non-inhibitor 0.8351 0.8626 
 Non-inhibitor 0.9433 0.9246 
Renal Organic Cation Transporter Non-inhibitor 0.7057 0.7043 
Distribution    
Subcellular localization Mitochondria 0.8594 0.812 
Metabolism    
CYP450 2C9 Substrate Non-substrate 0.7944 0.7499 
CYP450 2D6 Substrate Non-substrate 0.6615 0.6547 
CYP450 3A4 Substrate Substrate 0.5915 0.6428 
CYP450 1A2 Inhibitor Inhibitor 0.5345 0.5766 
CYP450 2C9 Inhibitor Non-inhibitor 0.876 0.8296 
CYP450 2D6 Inhibitor Non-inhibitor 0.7646 0.716 
CYP450 2C19 Inhibitor Non-inhibitor 0.8901 0.8184 
CYP450 3A4 Inhibitor Non-inhibitor 0.6304 0.5114 
CYP Inhibitory Promiscuity Low CYP Inhibitory Promiscuity 0.8936 0.852 
Excretion    
Toxicity    
Human Ether-a-go-go-Related Gene Inhibition Weak inhibitor 0.9626 0.96 
 Inhibitor 0.8081 0.8063 
AMES Toxicity Non AMES toxic 0.7298 0.6513 
Carcinogens Non-carcinogens 0.8488 0.7883 
Fish Toxicity High FHMT 0.9277 0.9499 
Tetrahymena Pyriformis Toxicity High TPT 0.9196 0.9733 
Honey Bee Toxicity Low HBT 0.8083 0.8412 
Biodegradation Not ready biodegradable 0.9959 1 
Acute Oral Toxicity III 0.7035 0.6799 
Carcinogenicity (Three-class) Non-required 0.6788 0.6531 
 
Table 7: ADMET Predicted Profile (regression analysis) 
  PD1-PDL1 inhibitor 

Established drug  
CID:117951478 

XGIQBUNWFCCMAS-UHFFFAOYSA-N 
Virtual Screened Drug 

CID: 127263272 
Model Unit Value Value 
Absorption    
Aqueous solubility LogS -2.3186 -2.7996 
Caco-2 Permeability LogPapp, cm/s 1.1475 1.2120 
Toxicity    
Rat Acute Toxicity LD50, mol/kg 2.4295 2.5248 
Fish Toxicity pLC50, mg/L 1.6327 1.4204 
Tetrahymena Pyriformis Toxicity pIGC50, ug/L 0.3436 0.4986 
 
Table 8: Comparative ADMET profile of the test ligands and the control 
  Blood-Brain Barrier Human Intestinal Absorption AMES Toxicity Carcinogenicity LD50 in rats 
PD1-PDL1 inhibitor BMS-202 0.6472 0.9776 0.7298 Non- carcinogenic 2.4295 
XGIQBUNWFCCMAS-UHFFFAOYSA-N 0.7091 0.9935 0.6513 Non- carcinogenic 2.5248 
BMS 198 0.7737 0.9901 0.6961 Non- carcinogenic 2.4876 
BMS 200 0.7617 0.8816 0.7426 Non- carcinogenic 2.7858 
126843234 0.8398 0.9692 0.6886 Non- carcinogenic 2.4431 
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Table 9: Cytotoxicity study result for the best virtual screened compound that is compound (PubChem CID 127263272) 
Pa Pi Cell-line Cell-line name Tissue/organ 
0.516 0.035 Kasumi 1 Childhood acute myeloid leukemia with maturation Haematopoietic and lymphoid tissue 
0.334 0.048 CCRF-CEM Childhood T acute lymphoblastic leukemia Blood 
0.256 0.07 NCI-H69 Small cell lung carcinoma Lung 
0.301 0.139 U-266 Plasma cell myeloma Blood 
0.134 0.043 D54 Glioblastoma Brain 
0.103 0.02 MOLT-3 T-lymphoblastic leukemia Blood 
0.23 0.171 Hs-578T Invasive ductal breast carcinoma Breast 
0.125 0.094 A2780cisR Cisplatin-resistant ovarian carcinoma Ovarium 
0.155 0.136 Ramos Burkittslymhoma B-cells Blood 
0.289 0.28 NALM-6 Adult B acute lymphoblastic leukemia Haematopoietic and lymphoid tissue 

 

 
Figure 6: Comparative ADMET studies of BBB, HIA, AMES toxicity 
and LD50 of the Established compounds against Virtual screened 
compounds. 
 
Comparative ADMET profile study of the compounds and the 
control 
A relative ADMET profile comparison was carried out for selected 
inhibitors. Predictions were based on parameters such as the Blood-
Brain Barrier (BBB), Human Intestinal Absorption (HIA), AMES 
Toxicity, and LD50 rat toxicity. The established inhibitor PD1-PDL1 
inhibitor, BMS- 202, the virtual screened drug 
XGIQBUNWFCCMAS-UHFFFAOYSA-N, CID: 127263272 and 
three other top compounds BMS- 198, BMS- 200 and PubChem CID 
126843234 were taken up for comparison according to ADMET 
studies. These five inhibitors were graphically represented using R-
programming as represented in Figure 6. The parameters, BBB, 
HIA, AMES Toxicity, and LD50 acquired from the admetSAR 
database and were tabulated according to their estimated values. 
BMS 200 is the sole inhibitor that displays a negative Blood Brain 
Barrier (BBB). Also, this inhibitor shows higher LD50 toxicity in rats 
well as AMES Toxicity when compared to others. The virtual 
screened compound shows lowest AMES toxicity while the 

established drug shows the lowest LD50 rat toxicity value (Table 
8). 
 
Cytotoxicity study: 
The results of cytotoxicity studies for the best virtual screened 
compound that is compound with PubChem CID 127263272 are 
summarized in Table 9. The table provides the probability of the 
compound to fall in the category of “active” compounds indicated 
by ‘Pa’ value. This implies that the structure of this compound 
bears a resemblance to the structures of molecules that are the most 
typical in a subset of "actives" in the PASS training set. For small 
cell lung cancer, the Pa value is 0.256 for the cancerous cell line 
NCI-H69. The ‘Pi’ value, which provides the probability of the 
compound falling in the category of “inactive” compounds, for the 
same cell line is a lowly 0.07. Interestingly, the same compound 
gives a high “Pa’ value of 0.516 for the cancerous cell line for 
childhood acute myeloid leukemia with maturation named Kasumi 
1, which is isolated from hematopoietic and lymphoid tissue. The 
‘Pi’ value for the same cell line is just 0.035. This result may 
implicate the usefulness of the same drug in the clinical treatment 
of acute myeloid leukemia. 
 
Conclusion: 
The BMS-202 drug, introduced by the Bristol-Myers Squibb (BMS) 
still binds to the PD-L1 dimeric structure with the highest affinity.  
We show that the compound XGIQBUNWFCCMAS-
UHFFFAOYSA-N, CID: 127263272 which, even though displays a 
slightly lower binding affinity, displays some properties that 
project it to be at better when compared to BMS- 202. The virtual 
screened drug displays a better ADMET profile when compared to 
BMS-202. The pharmacophore interactions of the drug portray that 
the drug binds to the dimeric PD-L1 structure with three hydrogen 
bonds. The presence of numerous van del walls (vdW) interactions 
further adds to the binding affinity of the drug to the protein 
structure. Cytotoxicity studies confirm that the molecular has a 
potential of acting as an effective inhibitor pending further in vitro 
analysis.  
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