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Abstract: 
Cross-talk among coupled stochastic Hindmarsh–Rose (HR) neurons is significantly affected by the topology of the neurons organization. 
If the coupled stochastic HR neurons are arranged in the form of ring topology with odd number of neurons, the neurons are in anti-phase 
synchronization with homogeneous distribution of phase ordering of the oscillators. On the other hand, if the coupled HR oscillators are 
arranged in the ring topology with even number of oscillators, the oscillators are formed into two groups which are anti-phase 
synchronized, but all the oscillators in each group are in in-phase synchronization. Synchronization of the HR oscillators due to coupling in 
all topological arrangements is affected by the noise. However, noise can induce optimal coherence of the cross-talked oscillators at a 
particular value at which signal processing is the most favorable with amplified signal, the phenomenon known as stochastic resonance. 
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Background: 

Communication among coupled natural systems could be the 
origin of emergence of important local and global properties, 
starting from normal state to chaos, crises, chimera and many other 
peculiar states. One way to deal with such complicated 
communication among the systems is to study synchronization 
among these modeled systems using various coupling mechanisms 
and explore all possible exhibited properties [1–5]. Further, since 
noise is an inherent parameter in natural systems, it plays an 
important role in terms of hindrance in signal processing to protect 
themselves from unwanted external signals (e.g. disease signal, 
cancer wave, irradiation etc.) and constructive way (enhance signal 
detection, amplification of signal etc) known as stochastic 
resonance [6, 7]. On the other hand, topology of the coupled 
rhythmic systems also affects the properties of the synchronization 
[8] which lacks intensive study in this direction. Since mechanisms 
in living systems are noise driven processes, noise helps in various 
ways [9–13]), starting from molecular to phenotypic level: to 
survive, stay fit, and for protection from the competing 
environment. For example, pathogens use noise to create 

phenotype diversities to enable to survive in the host [14]; higher 
level organisms use it for adaptation [15, 16]; cells use it to make 
important decisions and their fates [9] and various cellular 
phenotypes [17]. 
 
The processes in neuron dynamics comprise of random interaction 

of ions (𝑁𝑎+, 𝐾+, 𝐶𝑎2+) [18, 19], random closing and opening of ion 
channels [20], and synaptic inputs from the surrounding neurons 
[21] and can be modeled using stochastic framework [22]. These 
stochastic processes trigger random firing of membrane potential 
and other related variables [23]. Since chaotic nature is one of the 
important features in brain states, Hindmarsh–Rose (HR) model 
[19], which is a modified version of Fitzhugh model [24], can be 
taken as a significant model because the can generate bursting 
spiking patterns and chaotic behavior that is closely mimic to 
various physiological states of brain. Even though stochastic 
formalism of this model is not straightforward, one can model HR 
model using chemical Langevin equation (CLE) formalism [25]. 
There have been modifications in CLE formalism based on 
maintaining positivity of the noise part [26] and complex CLE 
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formalism [27], but these modifications either missing significant 
contributions from the system variables or limited to some specific 
models. One way to rescue from this unphysical meaning of 
negative molecule numbers is to rescale the variables in the model 
equations [28] and can construct a meaningful stochastic theory of 
HR model. 
 
The effect on synchronization by the topology of the coupled HR 
oscillators is the variation in synchronization threshold of the 
coupled oscillators [8]. Cross-talk among the neurons can be well 
studied using the concept of synchronization [2] and is a well-
studied phenomenon in deterministic HR model using various 

coupling mechanisms like electrical [29, 30] and chemical coupling 
[31], non-local coupling [8], and memristor synaptic coupling [32]. 
However, the impact of topology of the coupling neurons and its 
interplay with noise on the neuron communication are not fully 
studied.The emergence of interesting phenomena of 
communication through coherence (CTC) is a phenomenon of 
neuronal communication through interaction of large number of 
neurons in a network in brain from the complicated neuronal 
network might be triggered by the topology of the coupled 
neurons. We focus on the issue of how topology of the interacting 
neurons affects the properties of communication among these 
coupled neurons. 

 
Methodology: 
Chemical Langevin equation of Hindmarsh-Rose neuron model: 

Hindmarsh–Rose (HR) model [19] is an excitable neuron model 
[33] and can able to exhibit bursting spiking patterns as well as 

chaotic nature which may correspond to various 
neurophysiological states. The HR model system is described by, 
 

𝑑

𝑑𝑡
 𝐻 = 𝑅(𝑥, 𝑦, 𝑧; 𝑡);      𝐻 = [

𝑥
𝑦
𝑧
] ;     𝑅(𝑥, 𝑦, 𝑧; 𝑡) = [

𝑦 − a𝑥3 + 𝑏𝑥2 − 𝑧 + 𝐼𝑒𝑥
𝑐 − 𝑑𝑥2 − 𝑦

𝑟[𝑠(𝑥 − 𝑥0) − 𝑧]

]  

→(1) 

where x, y and z are variables corresponding to membrane potential, fast current (due to either 𝑁𝑎+𝑜𝑟 𝐾+ions) and slow current (corresponding to, 𝐶𝑎2+), 
respectively. The system parameters are chosen as a= 1, b = 3, c = 1, d = 5, 𝑥0 = −1.6, s = 4, 𝐼𝑒𝑥𝑡 = 3.25. Various parameter values of r can exhibit different 
patterns of the system. 

 
The neuron dynamics can be considered as a stochastic process due 
to random interaction of various ions (𝑁𝑎+, 𝐾+and𝐶𝑎2+) inside the 
neuron system, random diffusion of these ions through ion 
channels, and driving random external fluctuations. Further, 
various experiments show that the size of a neuron can be affected 

by various factors; namely,𝑆a𝑟1a𝑅, siRNA and siRNA + 𝑆a𝑟1a𝑅 
induced growth in dendritic and axonal lengths by 15%–45% in 
hippocampal neurons [34], organo phosphorus pesticides suppress 
the growth of axon and dendrite by 10%–30% in cultured 
sympathetic neurons of rodent [35], p160ROCK inhibition in 
cortical actin network stability causes the outgrowth of axon by 
20%–40% in mammalian [36], and bursts of depolarizing current 
induced action potential and blocking of calcium current bring 

about rapid contraction of dendritic spine head causing variation in 
hippocampal neurons’ size [37]. The macroscopic variables x, y, and 
z can be considered as the manifestation of the mentioned 
complicated interaction of microscopic ions driven by random 

environment in the neuron. Since 𝑥 ∝
𝑄

𝑟
, with Q as total charge in 

the neuron, the sign in x indicates the nature of the force. Similarly, 

since y ∝
𝑄

𝑡
 , the sign in y shows the direction of the net charge flow 

in the neuron. Now, without loss of generality the variables x and y 
can be scaled with a scale factor α as (x→ x+ α, and y→ y+ α) to get 
rid of negative values involved in these variables [28]. Following 
this scaling procedure, equation (1) becomes  

 

𝑑

𝑑𝑡
𝐻 = 𝑅(𝑥, 𝑦, 𝑧; 𝑡);  𝐻 = [

𝑥
𝑦
𝑧
] ;  𝑅(𝑥, 𝑦, 𝑧; 𝑡) = [

𝑦 − a𝑥3 + 𝑥2(𝑏 + 3aα) − 𝑥(3a𝛼2 + 2𝑏𝛼) − 𝑧 + a𝛼3 + 𝑏𝛼2 + 𝐼𝑒𝑥
(𝑐 + 𝛼 − 𝑑𝛼2) − 𝑑𝑥2 + 2𝑑𝛼𝑥 − 𝑦

𝑟[𝑠(𝑥 − 𝑥0) − 𝑧 − 𝑠𝛼]

]        

→(2) 

 
If we keep the same values of all constants in equation (1), the scaled 
model (2) with α = 13, same behavior of x, y, and z can be seen in 
rescaled model. Now, consider the size of a neuron be V at a 
temperature T with well-stirred ions (𝑁𝑎+, 𝐾+, 𝐶𝑎2+) then the 

resulting stochastic dynamics of state vector 𝐻[𝑠] = [𝑋, 𝑌, 𝑍]−1, 
where, X = xV, Y = yV, Z = zV. Each term in the three differential 
equations (2) corresponds to a particular state transition in the 
neuron given by 

                  𝑛1𝑋 + 𝑛2𝑌 + 𝑛3𝑍
𝑘𝑖
→𝑚1𝑋 +𝑚2𝑌 +𝑚3𝑍 →(3) 

 
where 𝑘𝑖 is classical rate constant of ith reaction (3) with reactant and 
product number state vectors 𝑛𝑖 = [𝑛1, 𝑛2, 𝑛3]

−1, 𝑚𝑖 = [𝑚1,𝑚2,𝑚3]
−1, and 

state change vector 𝑣𝑖 = 𝑛𝑖 −𝑚𝑖.  
 

The propensity function, which can be defined as the probability 
that the reaction (3) can be fired anywhere in the system [22], can be 
written as 𝑎𝑖 = 𝑐𝑖ℎ𝑖, where ℎ𝑖 is the possible molecular 
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combinations and 𝑐𝑖 is the stochastic rate constant given by 𝑐𝑖 =
𝑘𝑖𝑉

1−𝑣𝑖 . Hence, there are thirteen such reaction channels which are 
constructed from each term in the model (2) (see Table 1) [22, 38]. 

Following [25] and definingΛ𝑗 = [𝐻
[𝑠](𝑡), 𝑡]as the number of times 

the 𝑗𝑡ℎ state change takes place within the time interval[𝑡, 𝑡 + Δ𝑡], 
with Δ𝑡 > 0;  Δ𝑡 << 1, chemical Langevin equation of HR model 
can be derived as given by, 

 

𝐻𝑖
[𝑠](𝑡 + ∆𝑡) = 𝐻𝑖

[𝑠](𝑡) + ∑ Λ𝑗 [𝐻
[𝑠](𝑡), ∆𝑡]𝑣𝑗𝐼 ,

𝑀
𝑗=1           𝑤ℎ𝑒𝑟𝑒 𝑀 = 11;    𝑖 = 1,2,3    →(4) 

 
The equation (4) can be simplified by imposing two important 
approximations: (1) Δ𝑡 → 0 limit, where no significant change in 
state change is likely to occur, and Δ𝑎𝑖~0. This situation can be 
achieved when reactant molecular population is large, and Λ𝑗  can 

be approximated to Poisson random variable Λ𝑗 → 𝑃𝑗(𝑎𝑗 ,Δ𝑡). (2) 

Δ𝑡 → large limit allows  𝑎𝑗 >> 1, and one can approximate 𝑃𝑗(𝑎𝑗) →

𝑁𝑗(𝑎𝑗Δ𝑡, 𝑎𝑗Δ𝑡)(normal random variable). These two conditions can 

be applied simultaneously at the large population limit [25]. Then, 
applying 𝑁(𝑚, 𝜎2) = 𝑚 + 𝜎𝑁(0,1), where m and 𝜎 are mean and 

standard deviation, and putting  
𝐻𝑖
𝑠(𝑡+∆𝑡)−𝐻𝑖

𝑠(𝑡)

∆𝑡
≈
𝑑𝐻𝑖

𝑠(𝑡)

𝑑𝑡
 , we arrive at 

 

 𝑑𝐻𝑖
[𝑠]
(𝑡)

𝑑𝑡
= ∑ 𝑣𝑗𝑖 a𝑗[𝐻

[𝑠]] + ∑ 𝑣𝑗𝑖
𝑀
𝑗=1 √a𝑗[𝐻

[𝑠]]𝜉𝑗;   𝜉𝑗 = lim
𝑡→0
𝑁𝑀

𝑗=1 (0,
1

∆𝑡
)  

→(5) 

where 𝜉𝑗  are noise parameters. Now applying the transition of states in Table 1 to equation (5), and putting x = X/V, y = Y/V, z = Z/V, we arrive at CLE for 

HR model, 

 
𝑑

𝑑𝑡
𝐻 = 𝑅(𝑥, 𝑦, 𝑧; 𝑡) +

1

√𝑉
𝐺(𝑥, 𝑦, 𝑧, 𝜉; 𝑡);𝑤ℎ𝑒𝑟𝑒 𝐻 = [

𝑥
𝑦
𝑧
] 

→(6) 

𝑅(𝑥, 𝑦, 𝑧; 𝑡) = [

𝑦 − a𝑥3 + 𝑥2(𝑏 + 3a𝛼) − 𝑥(3a𝛼2 + 2𝑏𝛼) − 𝑧 + a𝛼3 + 𝑏𝛼2 + 𝐼𝑒𝑥
(𝑐 + 𝛼 − 𝑑𝛼2) − 𝑑𝑥2 + 2𝑑𝛼𝑥 − 𝑦

𝑟[𝑠(𝑥 − 𝑥0) − 𝑧 − 𝑠𝛼]

] 

𝐺(𝑥, 𝑦, 𝑧, 𝜉; 𝑡) =

[
 
 
 √𝑦 𝜉1 −√𝑎𝑥

3𝜉2 +√𝑥
2(𝑏 + 3a𝛼) 𝜉3 −√𝑥(3a𝛼

2 + 2𝑏𝛼)𝜉4 −√𝑧 𝜉5 +√a𝛼
3 + 𝑏𝛼2 + 𝐼𝑒𝑥𝜉6

√(𝑐 + 𝛼 − 𝑑𝛼2)𝜉7 −√𝑑𝑥
2𝜉8 +√2𝑑𝛼𝑥𝜉9 −√𝑦𝜉10

√𝑟𝑠𝑥𝜉11 − √𝑧𝜉12 −√𝑟𝑠𝑥0 + 𝑟𝑠𝛼𝜉13 ]
 
 
 

 

The first term in equation (6) is the deterministic counterpart, and the second term is due to internal noise which scales as 1 √𝑉⁄ . 

 
Table 1: Set of differential equations used in the model 
Differential equations Transition of states Propensity function 

𝑑𝑥

𝑑𝑡
= 𝑦 − a𝑥3 + 𝑥2(𝑏 + 3a𝛼) − 𝑥(3a𝛼2 + 2𝑏𝛼) − 𝑧 + a𝛼3 + 𝑏𝛼2 + 𝐼𝑒𝑥  𝑌

1
→𝑋 

3𝑋
𝑎
→𝜙 

2𝑋
𝑏+3a𝛼
→    3𝑋 

𝑋
3aα2+2𝑏𝛼
→        𝜙  

𝑍 + 𝑋
𝑋−1

→  𝜙 

𝜙
a𝛼3+𝑏𝛼2+𝐼𝑒𝑥
→         𝑋 

 

𝑌 
1

3!𝑉2
aX(X − 1)(X − 2) 

(b + 3a𝛼)X(X − 1) 
𝑋(3aα2 + 2𝑏𝛼) 
𝑍

𝑉
 

𝑌(a𝛼3 + 𝑏𝛼2 + 𝐼𝑒𝑥) 

𝑑𝑦

𝑑𝑡
= (𝑐 + 𝛼 − 𝑑𝛼2) − 𝑑𝑥2 + 2𝑑𝛼𝑥 − 𝑦 𝜙

(𝑐+𝛼−𝑑𝛼2)
→        𝑌 

2𝑋 + 𝑌
𝑑𝑌−1

→   2𝑋 

𝑋
2𝑑𝛼
→  𝑋 + 𝑌 

𝑌
1
→𝜙 

𝑌(𝑐 + 𝛼 − 𝑑𝛼2) 
1

2𝑉2
dX(X − 1) 

2𝑑𝛼𝑥 
𝑌 
 

𝑑𝑧

𝑑𝑡
= 𝑟[𝑠(𝑥 − 𝑥0) − 𝑧 − 𝑠𝛼] 

𝑋
𝑟𝑠
→𝑍 

𝑍
1
→𝜙 

𝑍
(𝑠𝑟𝑥0+𝑟𝑠𝛼)𝑍

−1

→           𝜙 

𝑟𝑠𝑋 
𝑍 
𝑠𝑟𝑥0 + 𝑟𝑠𝛼 
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Environmental coupling mechanism of Neurons: 

Consider two stochastic HR neurons defined by𝐻[1] =

[𝑥1, 𝑦1, 𝑧1]
−1and 𝐻[2] = [𝑥2, 𝑦2, 𝑧2]

−1. When these two neurons are 
coupled through a common dynamic environment via membrane 
potential (x), the mean of the internal noise of the xarise from the 
two neurons is also being associated with the dynamics of the 
neurons. Then, by using this coupling scheme [39, 40], we have 
 

𝑑

𝑑𝑡
𝐻[1] = 𝑊[1] +

𝜖1𝑘1

√𝑉
[
0
0
𝜃Ʌ
]  

→(7) 

𝑑

𝑑𝑡
𝐻[2] = 𝑊 [2] +

𝜖1𝑘2

√𝑉
[
0
0
𝜃Ʌ
]  

→(8) 

𝑑𝜃

𝑑𝑡
= −𝜔𝜃 −

𝜖2
𝑀
∑𝑘𝑖[𝑥𝑖 − 𝛼]

𝑀

𝑖=1

 
 

𝑊[𝑖] = 𝑅[𝑖] +
1

√𝑉
𝐺[𝑖];    𝐻𝑖 = [

𝑥𝑖
𝑦𝑖
𝑧𝑖
] 

 

Ʌ =
1

𝑀
∑Γ1

[𝑖];   𝑀 = 2

𝑀

𝑖=1

 
 

 
where 𝜔 is damping factor of the decay in environmental dynamics.  𝜖1and 
𝜖2 are feedback strengths to the system and environment respectively. 𝑘1 
and 𝑘2 are feedback adjusting parameters to the systems and environment 
too. Here, environment means the extracellular trafficking of ions 
experienced by each neuron as a consequence of surrounding neurons. 

 
Detection of synchronization 

The following two techniques are considered to detect the 
synchronization of two coupled systems. 
 

Recurrence plot: If 𝑥1(𝑡) and 𝑥2(𝑡)  are two variables corresponding 
to two coupled systems, then the two-recurrence plot (𝑥1, 𝑥2) can 
able to characterize the rate of synchronization of the two coupled 
systems [41]. If the points in the (𝑥1, 𝑥2) plot are randomly 
scattered, then the two systems are uncoupled. However, if the 
points are concentrated along one of the diagonals of the (𝑥1, 𝑥2) 
plot, then the systems are either in-phase synchronized, or anti-
phase synchronized. The thickness of the points along the diagonal 
indicates how strong the synchronization can be achieved between 
the two coupled systems (the thinner the line the stronger is the 
synchronization).  
 
Cross-correlation function:  
The equal-time cross-correlation function of the two variables 
𝑥1(𝜖, 𝑡), and 𝑥2(𝜖, 𝑡),  corresponding to two coupled systems, with 
coupling strength 𝜖, can be defined as [42] 

 

𝐶𝑥1 ,𝑥2(𝜖) =
〈𝑥1𝑥2〉−〈𝑥1〉〈𝑥2〉

𝜎1𝜎2
  →(9) 

 
where 𝜎𝑖 = [〈𝑥𝑖

2〉 − 〈𝑥𝑖〉
2]1/2and i= 1, 2 are standard deviations, where 〈… 〉 

denotes the time average. Then, this order parameter can characterize 
synchronization strength of the two coupled oscillators as follows:  
 

Cx1,x2 () = 1 (if the two systems are synchronized); = 0 (if the two 
systems are uncoupled); = -1 (if the two systems are anti-
synchronized) 
 

 
 
 

 
Results and discussions: 
Topology of arrangement of the coupled identical HR oscillators 
affects in various ways. The coupled HR oscillators are arranged in 
a ring with environmental coupling mechanism assigned among 
them and coupling is done via slow current due to , 𝐶𝑎2+(z)variable 
and look for possible synchronization among the remaining 
variables x and y. When the coupled oscillators exhibit in-phase 
synchronization, the threshold synchronization value (the 
minimum value of the coupling constant 𝜖at which the coupled 
oscillators just exhibit synchronization) increases as the number of 
coupled oscillators is increased similar to the reported work in [8]. 
Noise in the coupled HR systems, however, affects significantly in 
the rate of synchronization by allowing to increase the threshold 
synchronization value, which means coupled stochastic HR 
oscillators need higher value of the threshold synchronization value 
to exhibit synchronization. 
 
The scenario of synchronization is in different way when the 
coupled HR oscillators are in anti-phase synchronization and 
topology of the oscillators play an important role in achieving 

synchronization. When the number of coupled oscillators is odd, 
the anti-phase synchronization takes place in such a way that the 
HR oscillators are arranged by distribution of the oscillators at 
equal phases (Figure 1). If the coupled number of oscillators is three 
(N = 3), then at V = 50 the oscillators will achieve anti-phase 
synchronization at 𝜖 = 0.7 with phases 2π/3, so on, such that for𝑁 =
𝑁0 (odd) and for the same parameter values, the coupled HR 
oscillators will be in anti-phase synchronization with each oscillator 
at the phase 𝜃𝑁0 = 2𝜋/𝑁0 (Figure 1). We then increased the value of 

V i.e. by decreasing noise strength (noise 𝜂 ∝
1

√𝑉
) by taking V = 500 

with same 𝜖, the coupled HR oscillators follows the same trend of 
anti-phase synchronization with 𝜃𝑁0 = 2𝜋/𝑁0phase distribution of 

each synchronized oscillators. In this case strength of 
synchronization of the coupled HR oscillators is more than the 
lower value of V i.e. stronger noise system. The anti-
synchronization phenomenon is shown by recurrence plot (see the 
materials and methods) with points along second diagonal (Figure 

1 second column) and correlation plot with V (Figure 2 middle 
row). Now, if the number of oscillators is even, the way how the 



  
 

ISSN 0973-2063 (online) 0973-8894 (print) 
 

©2018  Bioinformation 14(9): 504-510 (2018) 

 

508 

coupled HR oscillators exhibit anti-phase synchronization is quite 
different from the way how odd number of coupled HR oscillators’ 
exhibit anti-phase synchronization. In this case, half of the total 
oscillators 𝑁𝑒/2 are in in-phase synchronization, whereas, the other 
half of the oscillators again shows in-phase synchronization, but 
these two groups exhibit anti-phase synchronization (Figure 2) 
with each other. 
 
These in-phase and anti-phase synchronization phenomena are 
detected by recurrence plots in (𝑥𝑖 , 𝑥𝑗) and ((𝑦𝑖 , 𝑦𝑗) ∀i, j = 1, 2, 

...,N(for in-phase synchronization distributions of phase points are 
along the diagonal, whereas, for anti-phase synchronization the 
phase points are along the opposite diagonal), and correlation C 
with V plots (Figure 2). The way how the 𝑁𝑒oscillators are 
distributed among the two groups is as follows: the alternate 
oscillators are in the same group, and the two groups are anti-
synchronized with phase = 𝜋 .  
 

The impact of noise in the rate of synchronization of coupled HR 
oscillators is quite significant. The coupled HR oscillators could not 
able to exhibit complete synchronization (𝐶 → 1) because noise 
fluctuations which can be measured from V. For small value of 
coupling constant 𝜖 = 0.2the oscillators show strong 
synchronization (both in-phase and out-phase synchronization) at 
large values of V i.e. significantly low noise in the system. But for 
significantly large values of 𝜖 (𝜖 ≥ 0.5), a peculiar scenario can be 
seen in the synchronization behavior of the oscillators. The 
oscillatorsattains strong synchronization at a particular value of V 
for a fixed𝜖, and then decreases as V increases. This meansthat 𝐶 →
𝐶𝑚𝑎𝑥 (𝐶𝑚𝑎𝑥is maximum correlation value for a particular𝜖) and 
noise strength𝑉0 , but C <𝐶𝑚𝑎𝑥 forboth 𝑉 > 𝑉0and 𝑉 < 𝑉0, which 
could be the case of stochastic resonance [6, 7], where signal 
processing of thecoupled HR oscillators show maximum at 𝑉 →
𝑉0(Fig. 2 second row panels). Similar scenario can be seen both 
ineven and odd groups of coupled HR oscillators. Further, the 
threshold coupling parameter value varies as a functionof noise in 
the system V and follows power law behavior 𝑉~𝜖−𝛼, where, 𝛼 is 
power law exponent with value 𝛼 = 2.3. 

 

 
Figure 1: Anti-phase synchronization among odd number of coupled HR oscillators in a ring topology: (a) Dynamics of anti-synchronized xi, i = 3, 5, 7, 9 of 

coupled HR oscillators for V = 50,  = 0.7 and V = 500,  = 0.7 respectively (left column); (b) Recurrence plots of the coupled HR oscillators showing anti-
phase synchronization (second column); (c) Arrangement of coupled HR oscillators with phase distribution (right column).  
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Figure 2: Synchronization of coupled HR oscillators arranged in the form of ring with even number of oscillators: (a) Dynamics of xi and yi 

at V = 500 with  values 0.2 and 0.7 respectively (upper and lower panels) with corresponding recurrence plots; (b) Correlation function as 

a function of V calculated at  = 0.2, 0.5, 07 respectively (middle row); (c) Plots of 𝑉 as a function of  (lower right corner panel). 
 
The synchronization among a coupled stochastic HR oscillator in a 
certain topology via environmental coupling mechanism is 
significantly affected by the topology of the network driven by both 
noise in the system and coupling parameter. When the topology of 
the oscillators in the ring is odd, each individual in the topology 
might not able to arrange in grouping the oscillators, and each 
individual become anti-phase synchrony to every other oscillator. 
However, if the number of oscillators is even, they might able to 
group into two which exhibit anti-phase synchronization. Further, 
noise could able to show maximum synchronization at a particular 
𝑉 value which could be the case ofstochastic resonance. 
 
Conclusion: 
The signal processing among the neurons is affected by various 
factors and parameters, more     importantly by topology of the 
oscillators under environmental coupling mechanism. The 

arrangement of the coupled HR oscillators may trigger different way 
of signal processing during the cross-talk among them. When the 
number of coupled oscillatore is odd, grouping into two groups is 
not possible and hence the situation could be most favorable case for 
anti-phase synchronization. The oscillators in each group are in in-
phase synchronization, whereas, the two groups show anti-phase 
synchronization. This type of environmental coupling mechanism 
could be quite possible in multi-neuron cross-talk which could 
utilize the optimization of signal processing depending on the 
topology the neurons network organization to exhibit coherence 
patterns of cortical neurons in brain [43]. Noise can be considered as 
an inherent fundamental parameter in natural systems which is 
incorporated in the system dynamics, and is very sensitive to the 
systems, their cross-talk and systems topology. Further, the noise in 
the system can be related to neuron size, which is quite variable due 
to both inherent internal and external fluctuations and can able to 



  
 

ISSN 0973-2063 (online) 0973-8894 (print) 
 

©2018  Bioinformation 14(9): 504-510 (2018) 

 

510 

perform both in destructive and constructive ways. This noise can 
able to optimize the signal processing in the coupled system 
generally for fast information processing and signal amplification, 
the phenomenon known as stochastic resonance. This change in 
internal noise can also trigger possibilities of cross-talk mechanisms 
at different neuro physiological states driven by variation in neuron 
size (mainly axon and dendrite) [34–37]. Coherence due to 
communication, which can be observed in brain due to interacting 
neurons, is highly dynamic and very sensitive to noise fluctuations 
[44]. Moreover, the change in topology with noise in brain stimulus 
may trigger a drastic change in neurons communication and their 
functioning. Hence, rigorous theoretical and experimental studies 
need to be done to observe such phenomena so that one can able to 
understand signal processing in brain at fundamental level. 

 
Acknowledgements: 
R.K.B.S. is financially supported by Department of Science and 
Technology (DST), New Delhi, India, under sanction no. 
SB/S2/HEP-034/2012. M.Z.M. is financially supported by young 
scientist DHR fellowship, New Delhi, India.  
 
Author contributions: 
 R.K.B.S conceived the model. R.K.B.S., S.K.S., and M.Z.M. did the 
numerical experiment. R.K.B.S., S.K.S., and M.Z.M. analyzed, 
interpreted the simulation results, and wrote the manuscript. 
 
Additional Information: 

Competing financial interests: The authors declare no competing 
interests. 
 
References: 
[1] Glass L. Nature 410: 277284 (2001). [PMID: 11258383] 
[2] Pikovsky A et al. Cambridge University Press, 2001.  
[3] Arenas A et al. Phys. Rept. 469: 93 (2008). 
[4] Thounaojam US. et al. Eur. Phys. J. Special Topics, 225: 17 (2016). 
[5] Thounaojam US. & Shrimali, M.D. Solitons & Fractals 107:5-12 (2018). 
[6] Gammaitoni L et al. Rev. Mod. Phys. 70: 223 (1998). 
[7] Hanggi P, Chem. Phys. Chem. 3: 285 (2002). [PMID: 12503175] 
[8] Igor B et al. Phys. Rev. Lett. 94: 188101 (2005). [PMID: 15904412] 
[9] Rao CV et al. Nature 420: 231 (2002). [PMID: 12432408] 
[10] Samoilov MS et al. Sci. STKE 366: 1 (2006). [PMID: 17179490] 
[11] Malik M et al. J Nanosci Nanotechnol. 12: 8303 (2012). [PMID: 

23421210] 

[12] Avena-Koenigsberger A et al. Nature Reviews Neuroscience 19: 
17 (2018).  

[13] Singh SS et al. Journal of theoretical biology 437: 58 (2018). [PMID: 
28935234] 

[14] Wolf DM et al. J. Theor. Biol. 234: 227 (2005). [PMID: 15757681] 
[15] Li Z et al. Genes Dev. 18: 1 (2004). [PMID: 14724175 
[16] Wang CL et al. Proc. Natl. Acad. Sci. U.S.A. 101: 7352 (2004). 

[PMID: 15123833] 

[17] Raj A & van Oudenaarden A, Cell 135: 216 (2008). [PMID: 
18957198] 

[18] Hodgkin AL, J. Physiol. 107: 165 (1948). [PMID: 16991796] 
[19] Hindmarsh JL & Rose RM, Nature 296: 162 (1982). [PMID: 

7063018] 
[20] White JA et al. Trends Neurosci. 23: 131 (2000). [PMID: 10675918] 

[21] Rowat PF & Greenwood PE Neural Comput. 23: 3094 (2011). 
[PMID: 21919786] 

[22] Gillespie DT, J. Phys. Chem. 81: 2340 (1977). [PMID: 21919786 
[23] Gerstner W & Kistler WM, Spiking Neuron Models (Cambridge 

University Press, Cambridge, 2002). 
[24] Fitzhugh R, Biophys. J. 1: 445 (1961). [PMID: 19431309] 
[25] Gillespie DT, J. Chem. Phys. 113: 297 (2000).  
[26] Wilkie J & Wong YM, Chem. Phys. 353: 132 (2008). 
[27] Schnoerr D et al. J. Chem. Phys. 141: 024103 (2014). 
[28] Poland D Physica D 65: 86 (1993). 
[29] Baptista MS et al. Phys. Rev. E 82: 036203 (2010); [PMID: 

21230157] 
[30] Guo D et al. Phys. Rev E 85: 061905 (2012). [PMID: 23005125] 
[31] Somers D & Kopell N, Biol. Cybern. 68: 393 (1993). [PMID: 

8476980 
[32] Saha DC et al. Ann. Rev. Chaos Theor. Bifur. Dyn. Syst. 6: 1 

(2016). 
[33] Terman DJ, Appl. Math. 15: 1428 (1991). 
[34] Bing Y et al. Cell 130: 717 (2007). 
[35] Howard AS et al. Toxicol. Appl. Pharmacol. 207: 112 (2005). 

[PMID: 6102564] 
[36] Bito H et al. Neuron 26: 431 (2000). [PMID: 10839361] 
[37] Eduard K & Segal M, Neuron 30: 751 (2001).  
[38] McQuarrie DA, J. Appl. Probab. 4: 413 (1967). 
[39] Katriel G, Physica D. 237: 2933 (2008). 
[40] Resmi V et al. Phys. Rev. E 84: 046212 (2011). [PMID: 22181250] 
[41] Pecora LM & Carroll TL, Phys. Rev. Lett. 64: 821 (1990). [PMID: 

10042089] 
[42] Plerou V et al. Phys. Rev. Lett. 83: 1471 (1999). 
[43] Michela C et al. Int. J. Neur. Syst. 17: 87 (2007). [PMID: 17565505] 
[44] Korn H & Faure P, C. R. Biol. 326: 787 (2003). [PMID: 14694754] 

 

Edited by P Kangueane 
Sharma et al. Bioinformation 14(9): 504-510 (2018) 

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License. 

   

 


