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Abstract:  
Alzheimer's disease (AD) represents an enormous global health burden in terms of human suffering and economic cost. AD 
management requires a shift from the prevailing paradigm targeting pathogenesis to design and develop effective drugs with adequate 
success in clinical trials. Therefore, it is of interest to report a review on amyloid beta (Aβ) effects and other multi-targets including 
cholinesterase, NFTs, tau protein and TNF associated with brain cell death to be neuro-protective from AD. It should be noted that 
these molecules have been generated either by target-based or phenotypic methods. Hence, the use of recent advancements in nano-
medicine and other natural compounds screening tools as a feasible alternative for circumventing specific liabilities is realized. We 
review recent developments in the design and identification of neuro-degenerative compounds against AD generated using current 
advancements in computational multi-target modeling algorithms reflected by theragnosis (combination of diagnostic tests and 
therapy) concern. 
 
Keywords: Alzheimer's disease, treatment modeling algorithms, memory complications, chronic neuro-degenerative disorder, 
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Abbreviations: 
AD - Alzheimer’s disease; Aβ- amyloid beta; NFTs– neurofibrillary tangles; 3D-CNN – 3Dimensional convolutional neural network; 
PD - Parkinson's disease; TNF- α inhibitor Tumor Necrosis Factor - α inhibitor; APP - Amyloid precursor protein; MTDL - multi-target 
designed ligands; QSAR - quantitative structure-activity relationship; AChE– acetylcholinesterase; BuChE – butyrylcholinesterase; 
MAO - monoamine oxidase; NCATS - National Center for Advancing Translational Sciences; BACE1 - beta-site APP cleaving enzyme1; 
ADME/T - absorption, distribution, metabolism, excretion/toxicity; sMRI- structural MRI; fMRI- functional MRI; PET - positron 
emission tomography; MRI+CLP - MRI with cleft lip and palate; MMSE- Mini Mental State Examinations; DLK - 
dualleucinezipperkinase; PDB - Protein Data Bank; CHARMM - Chemistry at Harvard Macromolecular Mechanics; FAD - flavin 
adenine dinucleotide; LOAD - late-onset Alzheimer's disease; TOMM40 - Translocase of outer mitochondrial membrane; APOE –
Apolipoprotein E;MCI - mild cognitive impairment; NC - normal control; SVM - support vector machine; ReLU - rectified linear unit; 
3D-CAE - 3D Computer-aided engineering; CADDementia- computer-aided diagnosis of dementia; ADNI - Alzheimer's Disease 
Neuroimaging Initiative; BDS - Blessed Dementia Scale; BIMC - Blessed Information-Memory-Concentration;DSM - The Diagnostic 
and Statistical Manual of Mental Disorders;ROS - reactive oxidative stress; CSM- Content storage management; CAE- Computer-aided 
engineering; BBB – blood brain barrier 

 
Background: 
Drug development for Alzheimer’s disease (AD) began with the 
proposal of the cholinergic hypothesis for memory impairment 
[1-36]. There are only four known cholinesterase inhibitors 
despite the evaluation of numerous potential treatments in 

clinical trials [7, 11, 14, 23, 25, 29, 33-35, 37-40]. The amyloid 
hypothesis which points to amyloid β-peptide (Aβ) [8, 20, 23, 32, 
41-46] as the initiating factor in AD had a central role in the 
development of therapeutic strategies on the synapses of 
analyzing its contribution to AD pathology and discussing its 
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potential as pharmacological target. Alzheimer's disease is also 
characterized by the presence of tau protein [2, 6, 10, 12, 14, 16, 
18, 27, 29, 46-50] and neuro-fibrillary tangles (NFTs) [1, 12, 14, 45, 
46 & 50] in the brain as a common neuro-degenerative disorder 
[1, 2, 6, 11, 23, 28-30, 36, 37, 43, 45, 51 & 52]. Various higher 
vertebrate models [45] have been used to study the patho-
physiology of AD. The criteria extend from prodromal (early) to 
mild-cognitive impairment of the disease. Early diagnosis plays 
an important role in preventing progress [41, 47 & 53] or late-
onset of AD. Treatment for AD is based on features in brain 
image [54-65]. The features include AD-related variations of 
anatomical brain structures such as ventricles size, hippocampus 
shape, cortical thickness, and brain volume. Prediction of AD is 
possible with a deep 3D convolution neural network (3D-CNN) 
[56] which learns generic features capturing AD biomarkers and 
adjusts to different domain datasets. Characteristics such as 
cognitive performance, activities of daily living, global change 
and severity ratings have persisted as the primary clinically 
relevant outcomes.  
 
Regulatory guidance has helped in the enrichment of early-stage 
AD trial samples by using biomarkers [25, 28, 47, 56 & 66] and 
phase-specific outcomes. We believe that the model of “one 
disease - one assay - one drug” is applicable to AD which is one 
of the most common neuro-degenerative diseases. The discrete 
complexities in the molecular pathogenesis combined with 
limited knowledge on the inherited and sporadic forms of the 
disease together the heterogeneity in the clinical development 
despite the surplus in available yet validated biomarkers for early 
diagnosis or prognosis of AD has been established [67-73]. Thus, 
a different way of thinking is in demand for a comprehensive 
explanation of the molecular pathogenesis of the disease. 
Therefore, it is of interest to review the recent advancements in 
systems biology towards a complete understanding of AD 
mechanisms emphasizing the emergence of various high-
throughput strategies for improvement drug development using 
OMICS data. 
 
Computational modeling analysis of AD targets 
We reviewed data on late-stage drug development for AD over 
the 4 decades [3, 25]. Drug-like molecules with cholinergic 
function with modest and consistent clinical effects in late-phase 
trials are known. Hence, there is a need for further improvement 
in the development of AD specific drugs. Data is also available on 
late clinical development, methods, biomarkers and regulatory 
issues at the multi functional point of view [74-81] with the 
comparison to other neuro-degenerative disorders such as PD for 
the purpose of neuro-protective effects [82-84]. It should be noted 
that predominant drug targets are in the cholinergic system and 
the amyloid cascade although a large range of small molecules 
and biological products have been investigated in clinical trials. 
Therefore, there is a need to review and document the available 
computational methods encompassing ligand-based approaches 
(QSAR, pharmacophores), structure-based approaches 
(homology modeling, docking, molecular dynamics simulation), 
and combined approaches (virtual screening) used in the 

development of drugs for AD. It is also important to document 
the comprehensive information related to the molecular 
etiologies of the disease, novel targets for drug development, and 
different chemo-informatics modeling strategies in this context. 
We also document information on multi-target drug 
development, natural products, protein/peptide biomedicine, 
natural products, and nano-materials are also included in 
connection with computational modeling of anti-Alzheimer drug 
development.  
 

 
Figure 1: (A) Distribution of patentsfiled for AD related drugs 
from 1997 to 2017; (B) Distribution of patents filed for AD related 
drugs on the basis of patent offices across the world.  
 
Data mining in known literature databases for AD 
We used the available literature databases for gathering 
information related to AD and its drug development. The 
Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/) database 
search was completed using keywords from 01/January/2008 
until 31/January/2018 for literature data on AD. Keywords such 
as “Alzheimer’s disease”, “memory complications”, “chronic 
neurodegenerative”, “dementia prediction”, “theragnostics”, and 
“treatment algorithms” were used. “Alzheimer’s disease” and 
“treatment algorithms” produced 3844 abstracts. This data was 
further manually curated for knowledge enchainment. We also 
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used the http://www. clinicaltrials.gov/ database for AD related 
clinical data. 
 

 
Figure 2: A hypothetical schematic illustrating the progression of 
amyloid deposition over time from early initiation (ei) phase to 
progressive phase (p1, p2) leading to the final late equilibrium 
(eq) phase is shown. 
 
IRP data related to AD: 
Intellectual property rights (IPR) data related to AD is highly 
relevant in drug discovery. We gathered IRP data related to AD 
made available from 1997 to 2017 using KIPRIS (Korean patents 
(KP)), WISDOMAIN (worldwide patents), IPIntellisource (USP, 
EP, JP (PAJ), CN (China) and PCT).  
 
AD related patent data: 
The treatment of AD poses perplexing challenges due to the 
complex pathology involved in the etiology of the disease. Drug-
discovery have to shift focus from the design of selective agents 
that target only one patho-physiological pathway to the design of 
agents that operate through manifold mechanisms targeting the 
complexity of the disease state. Patent analysis on new drugs for 
AD shows that the trend on patent submission has increased 
remarkably since 2005 (Figure 1A). The continuous clinical trial 
failures require a shift from the prevailing paradigm targeting 
pathogenesis to the multi functional one. AD is emerging as the 
most prevalent and socially disruptive illness of aging 
populations. Therefore, manifold targeting using a combination 
of drug entities has been used in the clinical setting for several 
years through a poly pharmacy approach. This poly pharmacy 
has been achieved by combining several drugs that 
independently act on different etiological targets of the disease. 
Moreover, it should that about 50% patents filed are held by 
companies in USA (Figure 1B). Furthermore, localized delivery 
by means of nano medicines limiting the side effects of anti-AD 
agents should be effective at improving AD management. 
However, some important concerns were to be addressed in this 
regard. Clinical efficacy and potential toxicity of naturally 

available active compounds in large trials also require further 
assessment before their use in clinical practice.  
 
Computer-aided mathematical model for AD: 
It is known that a mathematical model for AD consists of 
neurons, astrocytes, microglia, and peripheral macrophages as 
well as Aβ aggregation and hyper-phosphorylated tau proteins. 
This model is described by a system of partial differential 
equations. This model is used to simulate the effect of drugs that 
are either failed in clinical trials, or currently in clinical trials. 
These simulations suggest that a combined therapy with TNF-α 
inhibitor and anti-Aβ could yield significant efficacy in slowing 
the progression of AD [85-88]. 
 
Equations for Aβ: 
The Aβ within neurons, Aiβ is constitutively released from 
amyloid precursor protein (APP) at a rate,λiβ and it is degraded at 
a rate, Aiβ. Aiβ is overproduced under the reactive oxidative stress 
(ROS) designated as R.  
 
Hence the equation for is given by 
 
∂Aiβ/∂t = (λiβ (1+R) - (dAiβ . Aiβ ) N/N0 - [1] 
 
Where, N0 is the reference density of the neuron cells in the brain. 
 
Equation for neurons: 
Hyper-phosphonated tau proteins forming neuro fibrillary 
tangles cause microtubules de-polymerization and destruction 
resulting in neuron death [89-96]. However, neuron death is also 
caused by stress from pro-inflammatory cytokines that is resisted 
by anti-inflammatory cytokines. We represent the pro-
inflammatory cytokines by TNF- α and the anti-inflammatory 
cytokines by IL-10.  
 
Hence, the equation for N takes the following form:  
 
 ∂A/∂t= -dNF . Fi/Fi +kFi . N-dNT . Ta/Ta +kTa . 1/1+γ10/kl10 . N – [2]       
  
Where, the death rate of N caused by Fi and Tα are assumed to 
depend on their saturation levels. 
 
Imaging agents capable of assessing in vivo Aβ content in the 
brains for AD subjects is important as diagnostic agents to detect 
Aβ plaques to help test the amyloid cascade hypothesis. This aids 
to assess the efficacy of anti-amyloid therapeutics under 
development in clinical trials. The hypothetical schematic of the 
progression of amyloid deposition over time from the very early 
initiation (ei) phase to the continuously progressive (p) phase and 
to final late equilibrium (eq) phase is illustrated. It should be 
noted that relatively long (p1/t1) and brief (p2/t2) progressive 
phases as shown in Figure 2. Symptoms are not evident until the 
equilibrium (eq) phase but the cascade of pathological events that 
leads to these symptoms (i.e., neuro fibrillary pathology and 
synapse loss) is initiated during the progressive phase (p). 
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Figure 3: Computer-aided rational design of multi-potent ligands 
with controlled poly pharmacology is shown using a QSAR 
model. 
 
Multi-Target designed Ligands (MTDL) against AD: 
Multiple factors involved in AD include amyloid aggregation to 
form insoluble neuro toxic plaques of Aβ, hyper-phosphorylation 
of tau protein, oxidative stress, calcium imbalance, mitochondrial 
dysfunction, and deterioration of synaptic transmission. These 
factors together accentuate changes in the CNS homeostasis 
starting a complex process of interconnected physiological 
damage leading to cognitive and memory impairment and 
neuronal death. The rational design of new drug candidates by 
multi target-directed ligand (MTDL) developed a variety of 
hybrid compounds acting simultaneously on diverse biological 
targets has gained increasing attention in recent years. Therefore, 
it is of interest to review data related to MTDL in the 
development of candidates specific to the treatment of AD. 
 

 
Figure 4: Structures and pharmaco-phores of effective Multi-
Target Designed Ligands against AD is shown using a MTDL 
model. 
 
 
QSAR model for AD: 
QSAR modeling has progressed from analysis of small series of 
congeners (same kind) using basic regressions to applications on 

very large and diverse data sets using a variety of statistical and 
machine learning methods [31]. QSAR uses ligand based 
theoretical approaches for modeling the physical, biological, and 
pharmacological properties of compounds and forms a crucial 
initial step in drug discovery. Combinations of the QSAR 
approach and related theoretical methods such as virtual 
screening and docking are very useful in the study and design of 
multi-target ligands with unique poly-pharmacological profiles 
(Figure 3). Therefore, the application of QSAR in the 
identification and design of novel yet effective compounds in the 
treatment of AD is relevant. 
 
Chemo-informatics methods for on-Target and off-Target 
bioactivity prediction: 
Multimodal brain permeable drugs affecting a few brain targets 
involved in the disease pathology such as MAO [97-105] and ChE 
enzymes [37-40], iron accumulation and Aβ 
generation/aggregation were extensively examined as an 
essential therapeutic approach in AD treatment. In an example, a 
hybrid compound contains the key pharmacophores from three 
drugs such astacrine, rivastigmine (ChEIs), and 
rasagiline/ladostigil (MAO-B inhibitor) while NCE (New 
Chemical Entity) contain the pharmacophores of the drugs 
donepezil (ChEIs) and clorgiline (MAO-A inhibitor). 
Pharmacophore and 3D-QSAR studies [106-109] of donepezil and 
clorgiline derivatives inhibiting both AChE/BuChE and MAO-
A/B were successfully applied for lead optimization work and 
for design of new chemical entities and related ligands with 
optimal poly-pharmacological and pharmacokinetic profiles. The 
propargylamine moiety in the MAO-inhibiting pharmacophore 
of rasagiline, ladostigil or clorgiline is responsible for their neuro-
protective and neuro-restorative effects. Thus, propargylamine 
moiety used as the main chemical scaffold responsible for MAO 
inhibition in the designed hybrids is illustrated (Figure 4). 
 
Factorial design of multi target drugs for AD: 
Factorial designs of multi target drugs for AD are essential given 
the enormous and crucial advancements in the knowledge of the 
mechanisms and implications of AD. Available information on 
the epigenetics and environment differences specific to AD is 
crucial in the factorial design of the disease. The NIH National 
Center for Advancing Translational Sciences (NCATS) maintains 
NCATS Pharmaceutical Collection database (Table 1). Critical 
review on this data is highly relevant in this context. NCATS and 
pharma companies use this database to explore about 3800 
known drug compounds using phenotypic data in discovery. 
Various techniques for repositioning that includes blinded, 
knowledge-based and targeted-mechanism based as shown in 
Figure 5 are often used in the design of novel compounds. The 
chemical structure of Metamine® that is used as a multi-target 
molecule for AD is illustrated as an example in a chemo-
informatics based application of drug design. 
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Table 1: An update on selected anti-Alzheimer’s disease drugs in clinical trials (updated in October 2017) 
Target Drug name Therapy type Trial status Company 
Serotoninergic(5-HT6) Intepirdine Small molecule Phase II/III Axovant Sciences Ltd. 
Histaminergic(H3) SUVN-G3031 Small molecule Phase I Suven Life Sciences Ltd 
Glutaminergic Riluzole Small molecule Phase II Sanofi 
BACE inhibitor E2609 Small molecule Phase III Biogen, Eisai Co., Ltd. 
  AZD3293 Small molecule Phase III AstraZeneca, Eli Lilly & Co. 
  CNP520 Small molecule Phase II/III Amgen, Inc., Novartis Pharmaceuticals Corporation 
  JNJ-54861911 Small molecule Phase II/III Janssen, Shionogi Pharma 
  Verubecestat Small molecule Phase III Merck 
γ-Secretase inhibitor NIC5-15 Small molecule Phase II Humanetics Pharmaceuticals Corporation 
Aβ clearance CAD106 Active Immunotherapy 

(Aβ1-6 peptides) 
Phase II/III Novartis Pharmaceuticals Corporation 

  Gantenerum ab Passive immunotherapy 
(Against Aβ3-12 & Aβ18-27) 

Phase III Chugai Pharmaceutical Co., Ltd., Hoffmann-La Roche 

Tau stabilization TPI 287 Small molecule  Phase I Cortice Biosciences 
Tau aggregation inhibitor TRx0237 Small molecule Phase III TauRx Therapeutics Ltd 
p-Tau clearance AADvac-1 Active immunotherapy  

(Synthetic peptide truncated and misfolded 
tau) 

Phase II Axon Neuroscience SE 

Microglial activation inhibitor Azeliragon Small molecule Phase III Pfizer, TransTechPharma, Inc., vTv Therapeutics LLC 
  CHF 5074 Small molecule Phase II CereSpir™ Incorporated, Chiesi Pharmaceuticals Inc. 

 

 
Figure 5: Various techniques such as the chemical structure of (A) 
metamine; (B) blinded; (C) knowledge based; and the (D) 
targeted-mechanism based approaches are illustrated using a 
chemo-informatics model. 
 
Multi-target-directed ligands (MTDLs) for AD: 
Multi-target-directed ligands (MTDLs) [6, 11] offer promising 
candidates for the treatment of AD. The structures of 140 ligands 
were docked with the major targets of AD such as AChE, BACE-
1, and Aβ aggregation. Ligands were scored based on 
electrostatic and hydrophobic contributions to the binding 
energy. Polar interactions by H-bonding interactions analysis 
were studied. Docking scores were used to rank ligands 
depending on presence of number of H-bond donors and 
acceptors within the active sites. Binding energy scores 
represented in the Heat map (Figure 6) displayed variability in 

interactions of the ligands to the three targets of AD. There were 
several ligands that showed striking interaction with at least two 
targets and some had strong interaction with all the targets. It 
was shown that five anti depressant drugs having tricyclic 
secondary amines had strong binding affinity with broad 
specificity towards multiple targets of AD. Heat map analysis of 
binding constants for 140 FDA approved nervous system drugs 
screened against Aβ, AchE, and β-secretase is also available.  
 

 
Figure 6: Heat map represented by binding energy scores is 
shown for several compounds against AD related targets. 
Virtual screening using molecular docking for AD: 
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Molecular docking [110-116] enables the extraordinary structural 
diversity of natural products to be exploited in an efficient manner. 
The use of molecular docking in virtual screening for the 
identification of bioactive molecules from natural product databases 
is feasible. The diversity of chemical components and the 
unknown bio-metabolism is the challenge in use of natural 
medicines and the identification of their active constituents. The 
systematic strategy for evaluating the bioactive candidates in 
natural medicines used for AD is shown in Figure 7. Beta-site 
APP cleaving enzyme1 (BACE1) catalyzes [117-119] the rate 
determining step in the generation of Aβ peptide and is widely 
considered as a potential therapeutic target for AD. The active 
site of BACE1 contains catalytic aspartic (Asp) dyad and flap. 
Asp dyad cleaves the substrate amyloid precursor protein (APP) 
with the help of the flap. Available inhibitors against BACE1 are 
pseudo-peptide or synthetic derivatives. However, there is a need 
to search for a potent inhibitor with a natural scaffold interacting 
with the flap and Asp dyad. The natural database InterBioScreen 
was screened for 3D QSAR pharmacophore modeling, mapping, 
and ADME/T predictions [120-123] to find the potential BACE1 
inhibitors. Molecular dynamics simulation analysis of the docked 
compounds provided insights to binding stability. Thus, the use 

of molecular modeling, docking and simulation is highly relevant 
in the rational design of potential candidates for AD. 
 
Ware Drug Discovery Program and Decision tree model for AD: 
The Ware Drug Discovery Program [38] AD drug extends from 
target identification to human clinical trials and FDA approval of 
potential new AD therapies. This method is advanced to the 
academic centered drug target, biomarker discovery and 
validation followed by industry driven development of new 
compounds to clinical trials and FDA approval for marketing. 
The Ware Alzheimer Drug Discovery Program combines these 
two critical components into a unified program. The Ware Drug 
Discovery Program investigates compounds that are not of 
interest to industry due to lack of IRP issues towards the 
development of therapies for AD [124-130]. The generic 
diagnostic test mentioned in the trees is standard diagnosis; 
standard MRI or MRI+CLP as shown in Figure 8. The imaging 
procedures are followed by a cognition test (MMSE) to determine 
the disease stage when AD is diagnosed. Decision tree was 
performed and tested for classified patients to administer new 
molecules for AD treatment as described above. 

 

 
Figure 7: Analysis of naringenin-glucuronide and [M-glucuronide+H]+ used in AD treatment. 
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Figure 8: AD treatment scheme is illustrated using possible outcomes of the testing procedure: (a) The primary scenario and (b) The 
“screen and treat” scenario.  
 

 
Figure 9: Selective inhibitors of Dual Leucine Zipper Kinase (DLK, MAP3K12) with known activity are shown in the context of AD. 
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Molecular docking analysis for active site inhibitors of MAO-A 
and B: 
The use of docking tools in the design of compounds for neuro-
degenerative diseases is illustrated using MAO-A and B 
inhibitors using one of the subunits as a target. Water molecules 
and heteroatoms in the target were removed prior to the docking 
experiment. Hydrogens were added and the target protein is 
minimized using the Discovery Studio protocol (accelrys.com) 
using Chemistry at Harvard Macromolecular Mechanics 
(CHARMM) force field. Missing hydrogen atoms were added on 
the basis of the protonation state of the titratable residues. 
Molecular models of the inhibitors were built and optimized 
using SPARTAN 10.0 (software for a molecular modelling and 
computational chemistry application from wave function). 
Molecular docking was completed as shown in Figure 11 using 
AutoDock 4.2 (a suite for automated docking of target with 
ligands). The flavin-N5-oxide atom of the flavin adenine 
dinucleotide (FAD) molecule, which is a redox cofactor, and more 
specifically a prosthetic group of a protein involved in several 
important enzymatic reactions in metabolism	
   cover the entire 
binding site. Compounds were docked with both MAO-A and 
MAO-B and the selectivity was compared. Several representative 
ligands were chosen and the important interactions were 
visualized in the Accelrys Visualization 4.5 program as shown in 
Figure 11. 
 

 
Figure 10: Paradigm shift from Single-Target Molecules to Multi-
target Compounds for AD is shown using BACE-1 inhibitors.	
  
 
Theragnosis (combination of diagnostic tests and therapy) for 
AD: 
Theragnosis is a new field of medicine, which combines specific 
targeted therapy based on specific diagnostic tests with a focus 
on patient centered care. It provides a transition from 
conventional medicine to a contemporary personalized yet 
precision medicine. This paradigm involves using nano-science to 

unite diagnostic and therapeutic applications to form a single 
agent, allowing for diagnosis, drug delivery and treatment 
response monitoring. AD presents a pioneering example where 
research to implement every aspect of predictive, preventive, and 
personalized medicine is applicable. It should be noted that majority 
of available biomarkers serve as tools during the investigation of 
disease progression as well as during novel drug discovery and 
development.  
 
TOMM40 variable-length polymorphism and the age of late-
onset AD: 
Co-localized genetic markers TOMM40 and APOE [141-153] 
which account for the vast majority of variability in both risk and 
age-of-onset of the disease (Figure 12) is useful for the prediction 
of age of AD onset. It is proposed that each of the original AD age 
of onset curves is a composite of sub-curves that are defined by 
TOMM40 genotype. The APOE4/4 curve remains unchanged as 
the vast majority of APOE4 alleles carry the long TOMM40 allele. 
There are two curves for APOE3/4 individuals due to the 
presence of either a shortor a very long polymorphism linked to 
APOE3. There are three curves for APOE3/3 individuals due to 
the possible combination of alleles, i.e. short/short (Sh/Sh), 
short/very long (Sh/VL), and very long/very long (VL/VL). 
Thus, the commonly accepted assumption that LOAD is 
underlined by a complex and elaborate set of genetic markers can 
potentially be countered. The complexity can in fact be 
disentangled and reduced into a clear and minimal set of 
diagnostic markers. Moreover, a measured path has been set 
forth to establish the extent that these markers have clinical utility 
in supporting prevention therapy paving the road for rational 
health management and development of insurance 
reimbursement programs. It is expected that this and similar 
approaches will lead to real personalization of care in AD as well 
as other medical conditions for the benefit of patients, care givers, 
and health systems. 
 

 
Figure 12: Age of onset for AD to unaffected genotype is shown 
using TOMM40-APOE haplo-type curve. 
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Figure 11: 2D/3D representations of compounds binding to the active site of MAO-A in the context of AD are shown.  
 

 
Figure 13: Pre-trained genetic features specified by fine-tuned task with image data are shown.  
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Table 2: Effect of candidate SNPs for the conversion of mild cognitive impairment to Alzheimer’s disease* 

Gene SNP Chr. Position Minor/major2meta-
analysis AgeCoDe sample DCN sample ACE sample ADC sample 

        Allele P-value HR σHR I2 P-value HR σHR P-value HR σHR P-value HR σHR P-value HR σHR 
ABCA7 Rs3764650 19 1 046 520 G/T 0.24 0.9 0.08 0 0.83 0.96 0.17 0.31 0.72 0.23 0.6034 0.9 0.1 0.25 0.76 0.18 
ADAMST20 Rs7295246 12 43 967 677 G/T 0.43 1.04 0.05 0 0.88 0.99 0.09 0.25 1.2 0.19 0.7416 1 0.1 0.45 1.11 0.15 
BIN1 Rs7561528 2 127 889 637 A/G 0.55 1.03 0.06 0 0.76 0.97 0.1 0.19 1.25 0.22 0.9193 1 0.1 0.48 1.11 0.16 
CASS4 Rs7274581 20 55 018 260 C/T 0.67 0.96 0.08 0 0.95 1.01 0.17 0.36 1.27 0.33 0.4805 0.9 0.1 0.46 0.82 0.21 
CD2AP Rs10948363 6 47 487 762 G/A 0.65 0.97 0.06 0 0.56 0.93 0.11 0.97 0.99 0.18 0.7333 1 0.1 0.82 1.04 0.16 
CR1 Rs3818361 1 207 784 968 C/T 0.93 0.99 0.08 19 0.6 0.94 0.12 0.24 0.78 0.16 0.1693 1.2 0.1 0.67 0.93 0.16 
ECHDC3 Rs7920721 10 11 720 308 G/A 0.43 1.04 0.05 0 0.59 1.06 0.11 0.5 0.89 0.15 0.5159 1.1 0.1 0.47 1.11 0.16 
EPHA1 Rs10808026 7 143 099 133 A/C 0.75 0.98 0.06 0 0.77 0.97 0.11 0.93 0.98 0.21 0.994 1 0.1 0.73 0.94 0.17 
FRMD4A Rs17314229 10 14 016 159 T/C 0.75 1.04 0.11 0 0.63 0.91 0.18 0.97 0.99 0.3 0.9779 1 0.2 0.17 1.44 0.38 
INPP5D Rs35349669 2 234 068 476 T/C 0.91 1.01 0.07 30 0.53 1.06 0.1 0.24 0.82 0.14 0.5088 1 0.1 0.15 1.23 0.18 
MEF2C Rs190982 5 88 223 420 G/A 0.19 1.1 0.08 44 0.62 0.95 0.1 0.5 1.12 0.19 0.0018 1.3 0.1 0.71 1.06 0.15 
MS4A Rs4938933 11 60 034 429 C/T 0.31 0.93 0.06 27 0.67 1.04 0.11 0.65 1.08 0.18 0.023 0.8 0.1 0.42 0.89 0.13 
MTHFD1L Rs11754661 6 151 207 078 A/G 0.85 0.98 0.11 0 0.84 1.05 0.24 0.97 0.99 0.29 0.2979 0.8 0.1 0.26 1.38 0.4 
NDUFAF6 Rs7818382 8 96 054 000 T/C 0.18 1.07 0.05 0 0.5 1.07 0.11 0.53 1.1 0.16 0.4346 1.1 0.1 0.52 1.09 0.15 
NME8 Rs2718058 7 37 841 534 G/A 0.38 1.09 0.11 69 0.68 0.96 0.09 0.02 1.49 0.25 0.262 0.9 0.1 0.09 1.29 0.19 
PICALM Rs3851179 11 85 868 640 A/G 0.51 0.96 0.05 0 0.87 0.98 0.1 0.57 1.1 0.19 0.6135 1 0.1 0.27 0.85 0.13 
PTK2B Rs28834970 8 27 195 121 C/T 0.98 1 0.06 8.6 0.9 1.01 0.11 0.13 0.77 0.13 0.9222 1 0.1 0.31 1.16 0.17 
SCIMP Rs7225151 17 5 137 047 A/G 0.11 1.13 0.08 0 0.99 1 0.15 0.95 0.98 0.25 0.0813 1.2 0.1 0.34 1.23 0.27 
SPPL2A Rs8035452 15 51 040 798 C/T 0.61 0.97 0.06 27 0.78 1.03 0.1 0.21 1.23 0.2 0.1252 0.9 0.1 0.36 0.87 0.13 
TOMM40 Rs2075650 19 45 395 619 G/A 1.19e−14 1.62 0.1 0 1.02e−04 1.56 0.18 0 1.67 0.29 1.53e−07 1.8 0.2 0 1.49 0.19 
TREML2 Rs9381040 6 41 154 650 T/C 0.76 0.98 0.08 41 0.97 1 0.11 0.05 0.7 0.13 0.2735 1.1 0.1 0.79 0.96 0.14 

*Note: HRs was calculated with uni-variate Cox proportional hazard model with adjustment for age and gender.Abbreviations: ACE -
the Fundacio ACE from Barcelona - ADC, Amsterdam Dementia Cohort; AgeCoDe - German study on Aging, Cognition and Dementia 
in primary care patients; Chr - chromosome; DCN - German Dementia Competence Network; HR -hazardratio; σHR - hazard ratio 
standard deviation; I2 - heterogeneity index; SNP - single-nucleotide polymorphism.  
 
Diagnostics by adaptation of 3D convolutional networks for 
AD: 
AD leads to the death of nerve cells and tissue loss throughout 
the brain. Thus, the treatment is to reduce the brain volume in 
size dramatically through time that is affecting its function. The 
estimated number of affected people will double for the next two 
decades so that one out of 85 persons will have AD by 2050. The 
necessity of having a computer-aided system for early and 
accurate AD diagnosis becomes critical as the cost of caring the 
AD patients is expected to rise dramatically. Several popular non-
invasive neuro-imaging tools such as structural MRI (sMRI), 
functional MRI (fMRI), and positron emission tomography (PET) 
have been investigated for developing such a system. Multi-view 
features [154-156] from the available images are extracted using a 
classifier that trains to distinguish between different groups of 
subjects (AD, mild cognitive impairment (MCI), and normal 
control (NC)) groups. The sMRI has been recognized as a 
promising indicator of AD progression [157-161]. Various 
machine-learning techniques were employed to leverage multi-
view MRI, PET, and CSM data to predict AD. It was extracted 
from multi-view features using several selected templates from 
the MRI dataset of subjects. Tissue density maps of each template 
were used for clustering subjects within each class in order to 
extract an encoding feature for each subject. The use of support 
vector machine (SVM) to classify subjects is contextual. An 
implementation of the 3D-CNN [162-168] uses the ReLU 
activation functions at each inner layer and the fully connected 
upper layers with a softmax top-most output layer predicting the 
probability of belongs to an input brain sMRI to the AD, MCI, or 
NC group as shown in Figure 13. The Adadelta gradient descent 
was used to update the pre-trained 3D-CAE and to fine-tune the 
entire 3D-ACNN. The 3D-ACNN classifier can accurately predict 

AD on structural brain MRI scans than several other state-of-the-
art predictors. The pertaining and freezing layers were used to 
enhance feature generality in capturing the AD biomarkers. 
Moreover, three-stacked 3D CAE network were relevant on CAD 
Dementia dataset. The extracted learnt features (Table 2) are used 
for AD biomarkers detection in the bottom layers of 3D CNN 
network. Three fully connected layers are stacked on top of the 
bottom layers to form AD classification on 210 subjects in this 
network. The classification performance was measured using ten-
fold cross validation and compared to the state-of-the-art models. 
3D CNN out-performed compared to other known methods.  
 
Prognostic factors for AD: 
The factors that influence the rate of functional and cognitive 
decline in AD are poorly understood. An investigation using 
geriatric inpatients and outpatients with a clinical diagnosis of 
AD based on DSM-III criteria were assessed with the Blessed 
Dementia Scale (BDS) and the Blessed Information-Memory-
Concentration (BIMC) test at baseline and at 3, 6, and 12 months 
to identify prognostic factors. The rates of decline on both scoring 
systems varied widely among individuals are observed [169]. The 
only variable that significantly correlated with decline of 
functional status on the BDS was the initial cognitive score on the 
BIMC test; a higher BIMC score predicted a slow decline in 
function. Cognitive deterioration on the BIMC scale was faster in 
women than men and in younger than older patients, which 
confirms that the clinical course varies widely among patients 
with AD. It also shows that cognitive profiling at the onset of 
disease can help to predict disease progression and suggests that 
patients with early-onset of Alzheimer's may have more rapid 
cognitive deterioration [170]. In a slowly progressive disorder 
like AD, evaluation of the clinical effect for drug candidates 
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requires large numbers of patients over extended treatment 
periods. Current cell- and animal-based disease models of AD are 
poor at predicting a positive treatment response in patients. The 
gap between disease models and large yet costly clinical trials 
with high failure rates has to be bridged where biomarkers for 
the intended biochemical drug effect may be of value. Such 
biomarkers are called 'theranostic' [171]. Therefore, it is of interest 
to review the literature addressing the prospective value of these 
biomarkers that evaluated the performance of novel Aβ isoforms 
as theranostic markers in AD from cell to patient [172]. 
 
Nano medicine for the treatment of AD: 
There is no efficient therapy for AD but a promising approach is 
represented by nanotechnology, easily multi-functionalizable 
devices with size in the order of billionth of meter [173]. The 
development of nano-metric drug delivery systems permits a 
targeted and sustained release of old and new treatments offering 
a novel strategy to treat complex neuro-degenerative disorders 
[174]. Nano-based strategies for AD treatment aiming at carrying 
drugs across the blood-brain barrier (BBB) in particular to target 
the metabolism of Aβ peptide are promising. The theranostic 
nano-particles are built upon four basic components such as 
signal emitter, therapeutic payload, payload carrier, and 
targeting ligand. The signal emitter possesses certain unique 
optical, magnetic, or radioactive property, and can emit physical 
signals spontaneously or upon excitation by an external source. 
The signal can be detected by an external receiver and 
reconstructed to form images. The therapeutic payload can be 
chemotherapeutic drugs, or nucleic acids, such as DNA and 
siRNA. The payload carrier is generally a matrix commonly 
comprised of polymeric materials with multiple functional 
groups on which signal emitters or therapeutic payloads can be 
conjugated. The targeting ligand on the nano-particle is selected 
to bind to and form a complex with a specific disease marker on 
the target cell facilitating transport of theranostic nano-particle to 
the site of interest and enabling specific interactions with the 
target cell or tissue. The signal emitter and therapeutic payload of 
theranostic nano-particles can be either embedded in the carrier 
or conjugated on its surface while the targeting ligand is always 
covalently attached to the surface of the carrier, which allows the 
direct interaction with the target cell or tissue. Common multi-
modality nano-particle imaging agents include MRI-optical, MRI-
PET, and optical-PET agents [175-178]. For example, iron oxide 
super paramagnetic nano-particles can be conjugated with a 
fluorophore to enable both MR and biophotonic imaging [169]. 
With this dual-imaging capability, MRI scans can be used to 
identify tumor localization for post-operation monitoring while 
biophotonic imaging with the resolution at the cellular level can 
be used intra-operatively to identify tumor boundaries for precise 
resection. Nano-particles have been used for the targeted delivery 
of drugs aiming to reduce the AD symptoms or to reverse the 
course of the disease [179-183]. The multi-valence of nano-
particles has allowed their functionalization with several kinds of 
targeting groups to cross the BBB and to target the place of 
treatment. With this approach an increased drug bioavailability 
has been achieved in the CNS using intravenous administration 
in place of more invasive administration routes. Nano-particles 

have also been used in the development of vaccines and 
therapeutic formulations for intranasal administration. Targeted 
nano-particles have been proved useful to enhance the 
performance of therapies against AD. A better understanding of 
AD mechanisms will help the successful application of targeted 
nano-particles for combined therapies. 
 
Conclusion: 
Computer aided drug discovery includes data mining, chemo-
informatics, QSAR modeling, virtual screening, and molecular 
docking. We report a review on various computation 
methodologies used in CNS drug discovery processes such as the 
design of novel effective candidates for therapy of neuro-
degenerative AD. The use of sequential combination of ligands 
and structure-based virtual screening techniques with focus on 
pharmacophore models and molecular docking has been 
reported. The theragnosis (combination od diagnostic tests and 
therapy) paradigm for AD management involves using nano-
science to unite diagnostic and therapeutic applications to form a 
single agent or multiple functionalized pharmacies, allowing for 
diagnosis, drug delivery and treatment response monitoring. The 
application of this strategy to personalized AD care is envisioned.  
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