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Abstract: 
Aberrant expression of NEK2 (NIMA-related kinase 2) is indicated in a wide variety of human cancers. NEK2 is highly correlated 
to multi drug resistance by activating drug efflux activity.  Identification of new small molecule inhibitors targeted against NEK2 
therefore, facilitates to increase drug sensitivity of cancer cells, by stabilizing drug influx and minimizes the dose of therapeutic 
drug. Our work investigates to screen for optimal small molecule inhibitors against NEK2. In this study, we used a computational 
approach by modeling NEK2 protein using I-TASSER (Iterative Threading ASSEmbly Refinement) software. The modeled 
structure was subjected to protein preparation wizard; to add hydrogens and to optimize the protonation states of His, Gln and 
Asn residues. Active site of the modeled protein was identified using SiteMap tool of Schrodinger package. We further carried out 
docking studies by means of Glide, with various ligands downloaded from EDULISS database. Based on glide score, potential 
ligands were screened and their interaction with NEK2 was identified. The best hits were further screened for Lipinski’s rule for 
drug-likeliness, bioactivity scoring and ADME properties. Thus, we report two (didemethylchlorpromazine and 2-[5-fluoro-1H-
indol-3-yl] propan-1-amine) compounds that have successfully satisfied all in silico parameters, necessitating further in vitro and in 
vivo studies. 
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Background:  
MDR (Multi drug resistance) remains a major hurdle for 
effective cancer therapy.  MDR is a multifaceted phenomenon 
and majorly involves active drug removal by drug efflux 
transporters.  The most familiar source for the acquisition of 
acquired drug resistance to a broad range of anticancer drugs, 
is the over expression of one or more energy driven, active 
efflux transporter pathways that identify and expel anticancer 
drugs from cancer cells. Other mechanisms of resistance 
include altered drug targets, increased drug metabolism, active 
damage repair, alterations in cell cycle, membrane lipid 
composition, cell surface receptors, drug transporters and 
inhibition of drug-induced apoptosis [1, 2].  

Various drugs that can either inhibit or by-pass drug efflux 
pumps include annamycin  [3], tetrandrine [4], and toremifene 
[5] as well as utilizing nanocariers [6]. A new trend of poor 
substrates for efflux pumps was also developed [7]. In spite of 
this, the outcomes were often poor with agents against multi-
drug resistance and most of them have failed due to heavy 
toxicity or drug metabolism related issues, limited significance, 
non-efficacious in clinic and/ or have not been tried even in 
clinical settings [2]. Hence, new inhibitors focused on novel 
therapeutic targets may throw light into more molecular 
targeted therapies that could specifically and potentially bring 
down MDR.  
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Figure 1: a) Modeled NEK2 protein, using I-TASSER software; Visualization of modeled protein NEK2 using Maestro, depiction of 
secondary structures like helix (red), sheet (Cyan) and loop (Gray); b) Active site of NEK2; Ligand binding pocket of NEK2 is 
shown with predicted hydrophobic regions in yellow mesh, hydrogen bond donor surfaces in blue mesh and acceptor surfaces in 
red mesh 
 
NEK2 (NIMA-related kinase 2) is a MDR protein, that has 
gained significant importance in recent years, of controlling 
several MDR pathways of the ABC (ATP-binding cassette) 
transporter family, such as ABCB1, ABCG2, ABCC1 and was 
found to increase chromosomal instability, cell proliferation.  
NEK2 was found to act mainly through efflux pumps to induce 
drug resistance [8, 9]. Regarding the essentiality of NEK2, 
NEK2 is a mitotic protein kinase (Serine/Threonine) of the 
NEK family and has a role in regulating centrosome separation. 
But compared to other mitotic kinases, NEK function is subtle 
and neither suppression nor silencing dramatically affected cell 
cycle and play only a supportive role in centrosome separation 
[10, 11]. In normal cells, NEK2 is expressed in traces or mostly 
undetectable, but over expressed and found localized in the 
nucleus of cancer cells [12, 13]. NEK2 controls key MDR 
proteins  in a variety of cancers such as  multiple myeloma, 
myeloid leukemia,  lung adenocarcinoma, mantle cell 
lymphoma, mesothelioma, head and neck squamous cell 
carcinoma, bladder carcinoma, glioblastoma, T-cell acute 
lymphoblastic leukemia, colon carcinoma, hepatocellular 
carcinoma, melanoma, and ovarian adenocarcinoma [8,14] 
,breast cancer [15, 16], non-small cell lung cancer [17], diffuse 
large B cell lymphoma [18, 19]. Several in vivo studies have 
shown that ablation of NEK2 with siRNA has improved 
sensitivity of tumor to respond to drug treatment [20, 21]. 
Concerning clinical studies, many reports suggests that, 
abnormal expression of Nek2 at the protein level might be one 
of the mechanisms of tumorigenesis and indicate that, Nek2 
may represent a new potential target for therapeutic 
intervention [8, 17, 21-26]. In this study, we used a 
computational approach using I-TASSER to model the target 
protein NEK2 and GLIDE tool (Schrodinger) to identify and to 
validate reliable small molecule inhibitors against NEK2.  
 

Methodology: 
Protein modeling 
The amino acid sequence of human NEK2 was retrieved from 
UniProt (P51955). It is a Serine/threonine protein kinase 
containing 445 amino acids. The FASTA sequence of NEK2 was 
subjected to BLAST, choosing Protein Data Bank database to 
identify appropriate template. Full length protein template was 
not identified. Hence, using Iterative threading assembly 
refinement (I-TASSER) server, we modeled the protein. I-
TASSER server is an integrated platform for automated protein 
structure and function prediction based on the sequence to 
structure paradigm. It generates three dimensional atomic 
models from multiple threading alignments.  An estimate of 
accuracy, of the predictions was provided based on the 
confidence score of the modeling and the best scored model 
was identified and utilized for model validation. The protein 
was modeled by using Protein Preparation Wizard of 
Schrodinger Suite; the protein structure was prepared by 
adding hydrogen atoms, optimizing hydrogen bonds and 
verifying the protonation states of His, Gln and Asn. Energy 
minimization was carried out using default constraint of 0.3 Å 
RMSD and OPLS 2005 force field. SiteMap tool was used to 
identify binding pockets of NEK2. The site with a site score 
above 1, was selected for grid generation using Glide grid and 
docking studies were carried out. 
 
Molecular docking 
The ligands from different databases (ChemBridge, Maybridge, 
Pubchem, Sigma Aldrich, Specs) were downloaded from 
EDinburgh University LIgand Selection System (EDULISS) [27].  
Schrodinger ligand preparation product, Ligprep was used to 
prepare high quality, all atom 3D structures. The ligand 
preparation included 2D–3D conversions, generating 
variations, correction, verification and optimization of the 
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structures. Receptor grid was generated using Receptor grid 
generation in the Glide application (Glide, version 5.8, 
Schrödinger, LLC, and New York-2) of Maestro (Schrödinger, 
LLC, New York, NY, 2014-2). The receptor grid for NEK2 was 
generated by specifying the binding (active) site residues, 
which was identified by SiteMap tool. Once the receptor grid is 
generated, the ligands are docked to the protein (NEK2) using 
Glide version 5.8 (Grid based LIgand Docking with Energetics) 
docking protocol. The ligands were docked using “Extra 
precision mode” (XP). The docked conformers were evaluated 
using Glide (G) Score. The G Score is calculated as follows: 
 
G Score = a*vdW+b*Coul + Lipo + Hbond + Metal + BuryP + 
RotB + Site 
 
Wherein vdW denotes van der Waals energy, Coul denotes 
Coulomb energy, Lipo denotes lipophilic contact, HBond 
indicates hydrogen-bonding, Metal indicates metal-binding, 
BuryP indicates penalty for buried polar groups, RotB indicates 

penalty for freezing rotatable bonds, Site denotes polar 
interactions in the active site and the a=0.065 and b=0.130 are 
coefficients of vdW and Coul. 
 
Estimation of ligand lipinski properties and bioactivity score 
Ten ligands were chosen for the analysis of Lipinski properties 
and bioactivity. The SMILES format of ligands were 
downloaded from, either pubchem database or from Online 
SMILES Translator tool [28]. SMILES format for compounds,  
AF-407/13462035 and AE-641/00584006 were not available, 
their Mol format were downloaded from Specs database [29] 
and fed into Online SMILES Translator tool and the 
corresponding SMILES format’s were downloaded.  SMILES 
format of each compound was uploaded into Molinspiration 
web services [30], Molinspiration Cheminformatics, Slovensky 
Grob, Slovak Republic. The corresponding read outs of 
molecular properties and bioactivity scores were retrieved.  
 

 

 
Figure 2: a) Interaction of NSC636674 with NEK2; this compound establishes two hydrogen bonds with Glu126, Glu292  and pi-pi 
stacking with Arg130; b) Interaction of NSC132828 with NEK2; the compound forms hydrogen bond with His64, Glu126 and 
Arg129. Arg129 and Arg130 shows Pi-Cation interaction; c). Interaction of NSC132835 with NEK2 is shown; the compound forms 
hydrogen bonds with Glu126 and Glu292. Arg130 was engaged in Pi-Cation interaction 
 
ADME property analysis 
ADME properties of selected ligands were analyzed using 
QikProp tool of Schrodinger suite. The tool predicts the 
physiochemical properties with a detailed analysis of:  (i) 
predicted IC50 value for blockage of HERG K+ channels (ii) 
Caco-2 cell permeability (iii) brain/blood partition coefficient 
(iv) apparent MDCK cell permeability (v) prediction of binding 
to human serum albumin (vi) percentage of human oral 
absorption.  
 

Results:  
Modeling of nek2 and docking   
In the present study, in silico docking studies were carried out, 
to screen and identify appropriate ligands that can fit into the 
most favorable binding mode, against NEK2 modeled protein.  
The amino acid sequence of NEK2 was retrieved from Uniprot 
with accession number P51955. The structure was predicted by 
I-TASSER. This software implements a hierarchical approach to 
protein structure prediction. Structural templates are identified 
using multiple threading approach and full length atomic 
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models were constructed by iterative template fragment 
assembly simulation. The modeled structure was subjected to 
protein preparation to add missing hydrogen, optimize the 
protonation states of the His residues and orientation of 
hydroxyl groups. The structure was also subjected to energy 
minimization using the OPLS_2005 force field to constrain the 
heavy atoms. Figure 1a shows the structure of NEK2 after 
protein preparation.   
 
Active site of NEK2 was obtained (Figure 1b) using SiteMap 
tool, which provides a fast and effective means of identifying 
potential binding pockets of proteins. SiteMap identifies the 
character of binding sites using novel search and assesses each 
site by calculating various properties like size, volume, amino 
acid exposure, enclosure, contact, hydrophobicity, 

hydrophilicity and donor/acceptor ratio. As a result, three 
binding sites with site score more than 1 were identified. Site 1, 
with site score 1.139 was used for further docking analysis. The 
predicted amino acids in active site region are 61, 62, 63, 64, 122, 
125, 126, 127, 129, 130, 131, 132, 133, 135, 263, 266, 280, 286, 287, 
288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 
302, 309, 316, 319, 320, 322, 323, 326, 327. A grid was generated 
around the active site for effective binding. Glide docking tool 
of Schrodinger was used to dock the ligands to NEK2 protein. 
The ligand docking calculations were done on extra precision 
(XP) mode of Glide. Docking results of top 10 compounds are 
listed in Table 1. Docking score for the compound NSC636674 
was -9.46, this compound establishes two hydrogen bonds with 
Glu126, Glu292 and pi-pi stacking with Arg130. The binding 
mode of interaction is shown in Figure 2a.  

 
Table 1: Glide Docking Score of protein- ligand association  
No ORIGINAL.ID Docking score Compound Name 

1 NSC636674 -9.46 (3E,5E)-3,5-dibenzylidenepiperidin-4-ol 
2 NSC132828 -9.40 N-(2,6-diphenylpiperidin-4-ylidene)hydroxylamine 
3 NSC132835 -9.38 2,6-diphenylpiperidin-4-amine 
4 AF-407/13462035 -9.21 6-(4-chlorophenyl)-3-(3-pyridinyloxy)-2H-pyran-2-imine 
5 NSC168977 -9.12 Didemethylchlorpromazine 
6 S341886 -9.08 4-Benzylideneaminoantipyrine 
7 NSC13240 -9.00 2-(2-pyridin-3-yl-1H-indol-3-yl)ethanamine 
8 7921112 -8.98 N~1~-9H-fluoren-2-ylalaninamide 
9 NSC96938 -8.95 2-(5-fluoro-1H-indol-3-yl)propan-1-amine 

10 AE-641/00584006 -8.92 2-(2-naphthylsulfanyl)benzylamine 

  
Ligand NSC132828 (Figure 2b) forms hydrogen bond with 
His64, Glu126 and Arg129. Arg129 and Arg130 shows Pi-Cation 
interaction with docking score of -9.40. NSC132835 (Figure 2c) 
forms hydrogen bonds with Glu126 and Glu292. Arg130 was 
engaged in Pi-Cation interaction. Docking score of the 
compound was -9.38. The ligand interactions are shown in 
Ligand interaction tool of maestro (Schrodinger). 
 
Drug likeliness and bioactivity score  
Molecular properties of the selected compounds are read using 
Molinspiration software to satisfy lipinski’s rule of five, which 
is essential for rational drug design. All the compounds 
showed, no violation of all the five rules; not more than 5 
hydrogen bond donors, not more than 10 hydrogen bond 
acceptors, molecular weight of compounds less than 500, 
partition coefficient (log P) less than 5, rotatable bonds less than 
10, topological polar surface area  (TPSA) of not greater than 
140 (Table 2). Bioactivity scoring indicated, two compounds; 
didemethylchlorpromazine and 2-[5-fluoro-1H-indol-3-yl] 
propan-1-amine, to be a significant ion channel modulator with 
a score of 0.41 and 0.21 respectively (Table 3). The obtained 
scores are in the range of significant score value of above 0.0. 
For each compound, the bioactivity contribution will be 
calculated for each substructure of fragment; the bioactivity for 
the entire molecule will then be calculated, as a sum of activity 
of contributions of all the fragments in a molecule.  This 
provides a molecule activity score (a number, typically between 
-3 and 3). It has been recommended by Molinspiration that, 
molecules with the highest activity score have the highest 
probability to be active. 
 
 

ADME prediction of ligands  
QikProp tool predicted significant ADME properties such as 
permeability through MDCK cells (QPlogMDCK), log IC50 
value for blockage of K+ channels (QPlogHERG), gut-blood 
barrier (QPPCaco) and predicted brain/blood partition (Qplog 
BB) (Table 4) . Percent of Human Oral absorption is based on 
number of metabolites, binding to human serum albumin 
(QPLogKhsa), predicted aqueous solubility (QP logS) and cell 
permeability.   Physiochemical properties and ADME 
parameters of these ligands, confirms that they can be 
considered as drug candidates for further studies. 
 
Discussion: 
MDR to functionally targeted therapies against cancer is of 
current concern. Various strategies have been tried recently, to 
effectively bring down MDR but with limited success. Hence, 
new inhibitors focused on novel therapeutic targets of 
pathways involved in MDR are a compelling requirement, 
which could specifically and potentially bring down MDR. 
Several groups have reported to negating, important molecular 
targets down the line of MDR pathway. In one report, through 
homology modeling and molecular docking, several 
chemotherapeutic inhibitors were screened against MDR1 or 
ABCB1 and it was found that the drug paclitaxel can be used 
for repurposing against MDR in non-small cell lung cancer [31]. 
Pharmacogenomics and molecular docking studies have shown 
that apigenin can inhibit ABC transporters such as P-
glycoprotein and BRCP [32]. Nilotinib is shown to potently 
sensitize specific anticancer agents by blocking the functions of 
ABCB1/P-glycoprotein, ABCG2/BCRP and ABCC10/MRP7 
transporters involved in MDR [33]. NEK2 protein is well 
known to induce MDR [8]. Although conflicting, NEK2 is not 
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essential and plays only a supportive role in centrosome 
separation [10, 11]. NEK2 represents an interesting multifaceted 
therapeutic target [11, 34], that can regulate a multitude of 
MDR pathways such as ABCB1, ABCG2, ABCC1 [8]. Indeed, 
inhibitors are designed against NEK2 through structure based 
design such as aminopyridine derivatives [11] and inhibitors 
against NEK2 successfully affected proteasome activity of 
cancer cells [10]. Therefore, it is evident that small molecule 
inhibitor designing and pharmacological modulation of NEK2 
may affect several mechanisms important for tumor growth 
such as drug resistance, survival, progression, and metastasis 
[34 -36]. In this study, we employed a computational approach 
to screen small molecule inhibitors against NEK2. Binding 
affinities of the ligands with NEK2 are analyzed, evaluated 
based on the docking scores and the number of intermolecular 

hydrogen bonding interactions of the resulting receptor- ligand 
complexes. The top score compounds showed, minimum of 
three hydrogen bonding interaction with amino acids, present 
in the binding pocket. Compound NSC636674 showed Pi-Pi 
stacking. Pi stacking is prevalent in protein crystal structures, 
and contributes to the interactions between small-molecules 
and proteins. The shape and electronic properties of aromatic 
rings responsible for large polarizabilities and a considerable 
quadrupole moment resulted in preferred interaction 
geometries [37]. The geometry of these stacking suggests that, 
electrostatic interaction, play a role in the attraction between 
aromatic chain of a compound or amino acid with the amino 
acid. Further studies suggested that the stacking interaction, 
contributes to the binding energy of receptor-ligand [38]. 

 
Table 2: Molinspiration calculation of drug-likeness of compounds 

No Compound Molecular 
weight 

No. of 
Atom 

H-Bond 
Acceptor 

TPSA H-Bond 
Donor 

No. of  
rotating bond 

Log P N Violation 

1 NSC636674 277.37 21.00 2.00 32.26 2.00 2.00 3.54 0.00 
2 NSC132828 266.34 20.00 3.00 44.62 2.00 2.00 1.48 0.00 
3 NSC132835 252.36 19.00 2.00 38.05 3.00 2.00 0.72 0.00 
4 AF-407/ 13462035 298.73 21.00 4.00 59.12 1.00 3.00 2.81 0.00 
5 NSC168977 290.82 19.00 2.00 30.96 2.00 3.00 3.81 0.00 
6 S341886 291.35 22.00 4.00 39.50 0.00 3.00 2.86 0.00 
7 NSC13240 237.31 18.00 3.00 54.71 3.00 3.00 1.67 0.00 
8 7921112 252.32 19.00 3.00 55.12 3.00 2.00 2.19 0.00 
9 NSC96938 192.24 14.00 2.00 41.81 3.00 2.00 0.56 0.00 
10 AE-641/00584006 265.38 19.00 1.00 26.02 2.00 3.00 4.22 0.00 

Compounds showed no violation of all the five rules; not more than 5 hydrogen bond donors, not more than 10 hydrogen bond acceptors, 
molecular weight of compounds less than 500, partition coefficient (log P) less than 5, rotatable bonds less than 10, topological polar surface area 
(TPSA) of not greater than 140. 
 
Table 3: Molinspiration bioactivity calculations; of five criteria of known successful drug activity, with a score typically between -3 and 3.  
No Compound GPCR ligand Ion channel modulator Kinase inhibitor Nuclear receptor ligand Protease inhibitor 
1 NSC636674 0.09 0.11* -0.10 0.06 0.06 
2 NSC132828 -0.12 -0.22 -0.43 -0.35 -0.15 
3 NSC132835 0.09 0.17 -0.25 -0.47 0.07 
4 AF-407/ 13462035 -0.17 -0.12 0.08 -0.23 -0.36 
5 NSC168977 0.14 0.21* -0.16 -0.27 -0.20 
6 S341886 -0.90 -1.12 -0.63 -1.08 -1.07 
7 NSC13240 0.55 0.36 0.76 -0.05 0.05 
8 7921112 0.02 -0.06 0.15 -0.42 0.13 
9 NSC96938 0.22 0.41* 0.07 -0.55 -0.50 
10 AE-641/00584006 0.14 -0.06 0.14 -0.36 0.20 

Data obtained by calculation of sum of activity of contributions of all the sub-structure fragments in a molecule. Molecules with the highest activity 
score have the highest probability to be active. *indicates significant scoring for Ion channel modulator. 
 
Other compounds established cation –Pi bonding with the 
active site amino acids. Cation-pi bond interaction is a very 
important contributor of protein architecture and stability [39 - 
42]. The pi system is provided by the aromatic ring of the small 
molecule and the protein cation (Arg 130). Energetically, the 
cation-pi interaction is comparable to or stronger than a 
hydrogen bond [43]. Studies suggested that the cation-pi 
interaction is a powerful force that aids in the recognition 
between proteins and ligands and is a valuable predictor of 
drug-receptor interactions [44]. 
 
In the current study, all the compounds that showed good 
binding affinity, also exhibited drug like characteristics based 
on Lipinski’s rule of 5 that determines if the compound, has 

certain pharmacological or biological activity to make it an 
orally active drug in humans [45]. The molecular weights of all  
the compounds are below 500 Daltons, with less than 5 
hydrogen bond donors and 10 hydrogen bond acceptors.  In 
addition, analysis of pharmacokinetic properties such as the 
partition coefficient and Water solubility (QPlogS) of the 
evaluated compounds are within the range. The top 10 
compounds also showed good cell permeability (QPlogKhsa), 
bioavailability (QPCaco, QPMDCK) and high serum protein 
binding capacity (QPlogBB). All the pharmacokinetic 
parameters are within the acceptable range defined for human 
use, which collectively indicated that the screened compounds 
could be taken forward, for further analysis. 
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All the selected 10 ligands showed good docking scores 
reflecting drug-binding affinities with NEK2. All the selected 
ligands showed favorable molecular properties by satisfying 
Lipinski’s rule of 5 and ADME profile. Two compounds out of 
the 10 screened compounds, showed significant bioactivity 
scores as ion channel modulators; didemethylchlorpromazine 
and 2-[5-fluoro-1H-indol-3-yl] propan-1-amine. Interestingly, 
chlorpromazine derivatives are known to be active against 
MDR [46, 47]. We speculate that the activity of didemethyl-
chlorpromazine against MDR could be due to inhibition by 
binding to NEK2 from our current in silico study.   
 

Conclusion: 
NEK2 is associated with several human cancers with known 
MDR data. Hence, it is important to develop improved 
inhibitors for NEK2 negating MDR. In this study, we described 
modeling of NEK2 and docking studies to identify inhibitors 
against NEK2. Two compounds namely di-demethyl-
chlorpromazine and 2-[5-fluoro-1H-indol-3-yl] propan-1-amine 
showed good binding affinity and better ADME properties. The 
results obtained from this study may be worthwhile, to carry 
out further in vitro and in vivo studies to design novel and 
potential inhibitors against NEK2. 

 
Table 4: QikProp results of 10 best selected compounds based on docking score obtained with schrodinger docking suite. 
No Compound a QPlog 

HERG 
b QPP 
Caco 

c Qplog BB d QPP MDCK e logS f Qplog Khsa g Percent Human Oral 
Absorption 

1 NSC636674 -6.33 567.57 0.17 296.72 -3.26 0.41 95.09 
2 NSC132828 -6.63 398.85 0.06 202.65 -2.82 0.10 86.91 
3 NSC132835 -7.08 168.29 0.75 88.22 -1.95 0.33 80.93 
4 AF-407/13462035 -5.93 1619.27 -0.22 2055.83 -4.71 0.30 100.00 
5 NSC168977 -5.72 593.21 0.39 1210.49 -3.49 0.43 100.00 
6 S341886 -5.56 2568.73 -0.17 1371.54 -3.65 0.01 100.00 
7 NSC13240 -5.80 256.73 -0.12 125.87 -2.04 0.02 81.91 
8 7921112 -6.02 292.34 -0.12 144.85 -2.54 0.05 83.17 
9 NSC96938 -4.66 387.00 0.19 354.27 -1.24 -0.19 83.18 
10 AE-641/00584006 -6.58 706.42 0.25 502.42 -3.37 0.52 100.00 

(a) Predicted IC50 value for blockage of HERG K+ channels (Acceptable range limit – above 5.0),  (b) Predicted Caco-2 cell 
permeability in nm/sec (<25 poor, >500 great), (c) Predicted brain/blood partition coefficient (Acceptable range -3.0 to 1.0), (d) 
Predicted apparent MDCK cell permeability in nm/sec (<25 poor, >500 great), (e) Prediction of aqueous solubility in mol/L 
(Acceptable range -6.5 to 0.5), (f) Prediction of binding to human serum albumin (Acceptable range -1.5 to 1.2),  (g) Percentage of 
human oral absorption (<25% is poor and >80% is high). 
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