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Abstract: 
Largely driven by huge reductions in per-base costs, sequencing nucleic acids has become a near-ubiquitous technique in 
laboratories performing biological and biomedical research. Most of the effort goes to re-sequencing, but assembly of de novo-
generated, raw sequence reads into contigs that span as much of the genome as possible is central to many projects. Although truly 
complete coverage is not realistically attainable, maximizing the amount of sequence that can be correctly assembled into contigs 
contributes to coverage. Here we compare three commonly used assembly algorithms (ABySS, Velvet and SOAPdenovo2), and 
show that empirical optimization of k-mer values has a disproportionate influence on de novo assembly of a eukaryotic genome, the 
nematode parasite Meloidogynechitwoodi. Each assembler was challenged with ~40 million Iluumina II paired-end reads, and 
assemblies performed under a range of k-mer sizes. In each instance, the optimal k-mer was 127, although based on N50 
values,ABySS was more efficient than the others. That the assembly was not spurious was established using the “Core Eukaryotic 
Gene Mapping Approach”, which indicated that 98.79% of the M. chitwoodi genome was accounted for by the assembly. 
Subsequent gene finding and annotation are consistent with this and suggest that k-mer optimization contributes to the robustness 
of assembly. 
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Background: 
The progression of technology from Sanger sequencing to the 
current “next-generation” platforms has heralded striking 
reductions in the cost of generating data. Sequencing nucleic 
acids has become a near-ubiquitous technique in laboratories 
performing biological and bio-medical research. Sequencing 
comes in two forms, distinguished by their needs for assembly 
into a contiguous reconstruction of a larger molecule. Most 
prevalent are various forms of “re-sequencing” in which the 
sequencing reads are aligned with a reference genome to reveal 
bases polymorphic between samples. Computationally, this is not 
a difficult undertaking. The other mode is the assembly of de 
novo-generated, raw sequence reads into contigs that are, as close 
as possible a full accounting of the genome of the organism in 
question. In practice, except for the smallest of genomes, 
complete coverage is neither attainable nor usually needed. 
None-the-less, maximizing the amount of sequence that can be 
correctly assembled into contigs is desirable. Reference-free 
assembly is based on stacking overlapping sequences of genomic 
fragments of a defined size (the k-mer), generated by breaking 
each read into k-mer size. Here we examined three commonly 

used assembly platforms, and showed that optimization of k-mer 
values has a disproportionate influence on de novo assembly of a 
eukaryotic genome. 
 
Genome assembly algorithms permit adjustment of k-mer size, 
and also of the related feature coverage (or depth) of the k-mer 
assembly. The k-mer optimizing tool “Velvetadvisor”[1], for 
example, estimates a theoretically optimal k-mer size as follows: 

k-mer coverage  * read length 
k-mer size = 1 + read 

length - 
Genome coverage 

where, 
 

A total number of reads * read length 
Genome coverage = 

Estimated genome size 

Thus,k-mer size and k-mer coverage approximatean inverse 
relationship.Because k-mer size and coverage impact the 
assembly, methods to predict optimal k-mer size have been 
proposed.  
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In particular, Chikhi and Medvedev (2013) developed the 
KmerGenie algorithm [2] to guide selection of k-mer size, and 
demonstrated its utility with the assembly tools Velvet [3] and 
SOAPdenovo2 [4]. 
 
In our lab, we study plant-parasitic, root-knotnematodes 
(Meloidogyne spp.), which are responsible for annual crop losses 
approaching USD 80 billion worldwide. These pathogens have 
genomes in the 50 Mbp to 150 Mbp range, with marked 

differences in gene number betweenspecies.  In cool climates, two 
species (M. hapla and M. chitwoodi) predominate and appear to 
occupy the same niche (i.e., are sympatric). Whole genome 
comparison would likely shed much light on the basis for 
sympatry. A well-annotated draft sequence is available for M. 
hapla [5, 6], and we recently sequenced the M. chitwoodi genome; a 
comprehensive biological annotation will be published 
elsewhere. 

 

 
Figure 1:Empirical optimization of k-mer sizes enhances genome assembly across three software platforms (For details, see Table 1-
2). X-axis indicates software, k-mer size, and coverage cut off. Y-axis on the left side indicates the length of longest contig (bp) as a 
function of x-axis, corresponding to grey bars. Y-axis on the right side indicates N50 length (bp), corresponding to red lines. During 
optimization process, to assess assemblies by N50 (red edges), it is compared of de novo assembly of ABySS, Velvet, and 
SOAPdenovo using different k-mer sizes and coverage cut offs.A more contiguous assembly is obtained for larger N50. At the 
default coverage thresholds, when k-mer sizes were increased, N50 was overall concave, peaking at 127-mer. When coverage 
threshold was increased within the same k-mer size, N50 was decreased within 127-mer whereas increased within 247-mer. The 
length of longest contig (grey bar), though not exactly identical, shows similar pattern as N50. Among the selected k-mers, the 
largest numbers of N50 and the length of the longest contig were achieved at 127-mer and 4.6 coverage-cut-off by ABySS.  
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 KmerSize Cov. 

Cut 
Off 

Reads 
OnContigs 

# of 
Contigs 

TotalLgth Reads 
/Contig 

Avg. 
Lgth 

Longest 
Contig 

N50 

63 5.6 40,630,414 297,634 169,228,606 137 569 403,332 42,265 
99 4.9 38,878,837 185,458 170,576,726 210 920 528,011 60,946 

125 4.6 37,224,400 132,597 169,195,886 280 1,276 758,109 69,778 
127 4.6 37,088,213 128,239 168,988,320 289 1,318 758,111 70,023 
129 4.5 36,955,274 126,133 169,001,206 292 1,339 758,113 70,751 
131 4.5 36,815,722 123,000 168,764,165 299 1,372 758,114 69,968 
135 4.4 36,534,686 118,212 168,707,383 309 1,427 733,018 69,506 
161 4.0 34,563,084 92,400 167,205,432 374 1,809 515,211 68,049 
197 3.5 31,610,306 55,721 162,550,195 567 2,917 328,230 55,555 
233 3.0 28,370,399 42,096 159,159,885 673 3,780 243,375 30,450 
247 2.6 27,070,127 44,302 155,691,515 611 3,514 243,375 13,486 
259 2.2 25,107,148 64,765 147,149,476 387 2,272 243,375 4,552 

ABySS 

261 2.2 24,517,414 70,074 143,110,673 349 2,042 243,375 3,690 
Table 1: Comparison of de novo assembly over different k-mer sizes, setting other parameters at default. We performed 
assemblies using k-mer values 63, 99, 161, 197, 233, 247, and 261. The value 247-mer was predicted “Velvet advisor, and 261-mer by 
“KmerGenie”. At the default k-mer coverage-cut-offs, 5.6, 4.9, 4.0, 3.5, 3.0, 2.6, 2.2, and 2.2 respectively,ABySS resulted in gradual 
increase in N50 from 63-mer to 161-mer and gradual decrease from 161-mer to 261-mer. To investigate more narrow ranges of k-
mer, the averaged value of k-mersizes which resulted in two largest N50 (161-mer: 68,049; 99mer: 60,946), 130-mer, was chosen. 
Surrounding 130-mer, we increased or decreased k-mer size by 2 (125, 127, 129, 131, and 135), resulting in increasing and 
decreasing N50s (69 778, 70 023, 70 751, 69 968, 69 506).Though 129-mer resulted in a slightly higher N50 (70,751), it wasted about 
20 percentages reads from one-end (unaligned reads: 975,453; singleton: 3,104,888; total one-end reads on contigs: 16,925,193 = 
21,005,534 - 975,453 - 3,104,888). Thus, to keep more than 80 percentages of reads, we determined to cut at 127-mer which achieved 
the second largest N50 (70,023) as well as enough amount of information on reads (unaligned reads: 936,337; singleton: 3,050,181; 
total one-end reads on contigs: 17,019,016 = 21,005,534 - 936,337 - 3,050,181). 
 
Prior to assembly of the M. chitwoodi reads, we queried 
“Velvetadvisor” and “KmerGenie” to compute a value for k-
mer size (247 and 260 respectively). Although similar, these 
values are not identical, and led us to explore empirical 
optimization of k-mer size. In this study, we show that a 
‘Simple Grid Search’, a widely used optimization algorithm, 
achieves the best k-mer value for assembly. Our proposed 
method has three steps. Firstly, we explicitly specified an 
equally-spaced interval including the k-mer size predicted by 
'Velvet advisor' or 'KmerGenie'. Those k-mers were evaluated 
according to N50.Secondly, we selected a next set of k-mers in a 
more-narrow interval around those k-mers with the largest N50 
from the first evaluation. Lastly, we chose the best k-mer by 
assessingthe second set of k-mers by taking into account N50 as 
well as other statistics. We found that assembly size is much 
more sensitive to k-mer size than has been theoretically 
estimated (Figure 1). Importantly, we found that our empirical 
approach yielded an assembly with an N50 of 70,023, compared 
to best N50 values of 46,442 (Velvet advisor) or 42,333 
(KmerGenie). 
 
Alone, the N50 value provides no information about the quality 
of the assembly, which needs to be verified by some 
independent means. One useful metric is to detect the presence 
or absence of a set of genes encoding proteins established to be 
crucial for eukaryotes. The “Core Eukaryotic Gene Mapping 
Approach” (CEGMA) tool performs such an analysis using a 
defined database of 458 core proteins [7]. The percent of that 
protein set identified serves as a surrogate for the percentage 
genome coverage by the assembly. Additionally, the highly 
defined CEGMA proteins identify a reference set from which to 

unambiguously deduce elements of gene structure, including 
translation start/stop sites and intron/exon boundaries. Such 
gene models represent a reliable training set for gene prediction 
algorithms such as AUGUSTUS [8]. In our project, we further 
seeded the gene finders with EST data.Finally, genomic features 
were elucidated using RepeatMasker[9], and functional 
domains were predicted using InterProScan[10] and Blast2GO 
[11] as functional annotation.The results we present 
hereindicate that the assembly based on empirically-
determined k-mers yields not just a larger N50, but also a 
useful genome assembly.  
 
Methodology: 
Data Generation and Processing 
Total genomic DNA was isolated from Meloidogynechitwoodi 
collected in a potato field in Washington State, and shipped as 
an ethanol precipitate to NCSU. Libraries with an average 
insert size of 700 bp were constructed to facilitate 300 bp 
paired-end reads, and sequences determined on an 
IlluminaMiSeq II instrument. Low quality reads (Phred values 
≤30) were rejected, and the remainder used for assembly. 
Because it is likely that different assembly algorithms will give 
different results in a genome-specific (and an a priori 
unpredictable) manner, we performed k-mer optimization on 
three commonly-used assembly algorithms, viz., ABySS 
(version 1.3.7), Velvet (version 1.2.10) and SOAPdenovo 
(version 2.01). 
 
De novo Assembly 
In advanceof fine-tuning parameters, we estimated the 
recommended k-mer size using “KmerGenie” to be a 260-mer. 



BIOINFORMATION Open access 
 

ISSN 0973-2063 (online) 0973-8894 (print) 

BIOINFORMATION 12(2): 36-40 (2016) 

39 

  ©2016  

	  

We trimmed this to 259-mers to suppress palindromes. The 
“Velvetadvisor” [1]recommended an optimal k-mer to be a 247-
mer (coverage cut-off 15). We performed assemblies by 
employing a variant of a 'Simple Grid Search' where we used k-
mers ranging from 259-mer to 63-mer, with intervals of 36. 
Other attributes were set to the default setting of coverage-cut-
off for each algorithm. To assess if the largest N50 is observed 
at one particular k-mer size among the previously tested set, k1 
(k-mer with the largest N50) and k2 (k-mer with the second 
largest N50) were averaged to k3, (k1+k2)/2. More values of k-
mer surrounding k3 at intervals of 2 were performed to identify 
the optimal k-mer value (Table1-1). The total number of reads 
aligned to contigs was also taken into account. In addition, for 

further parameter fine-tuning, results from different coverage-
cut-offs other than default settings were compared 
(Table2).SOAPdenovo was run under k-mer sizes equal to or 
less than 127-mer as it is the maximum k-mer size available in 
this program. To further validate our method, we arbitrarily 
selected two organisms for evaluation: the bacteria 
Neisseriagonorrhoeae (assembled genome size 2.15 Mbp) and 
Camelpox virus (assembled genome size 0.20 Mbp). FASTQ files 
were obtained from the European Nucleotide Archive (ENA) 
and were de novo assembled by ABySSusing k-mer sizes chosen 
by KmerGenie and Velvet advisor as well as by our empirical 
methods. 

 
 Kmer 

Size 
Cov. 
Cut 
Off 

Reads 
On 
Contigs 

# of 
Contigs 

Total 
Lgth 

Reads 
/Contig 

Avg. 
Lgth 

Longest 
Contig 

N50 

63 5.6 40,630,414 297,634 169,228,606 137 569 403,332 42,265 
99 4.9 38,878,837 185,458 170,576,726 210 920 528,011 60,946 

4.6 37,088,213 128,239 168,988,320 289 1,318 758,111 70,023 
10 36,951,014 66,039 158,776,887 560 2,404 344,946 46,837 

127 

15 35,995,149 64,949 145,747,066 554 2,244 344,995 9,625 
2.6 27,070,127 44,302 155,691,515 611 3,514 243,375 13,486 
10 17,222,135 10,028 50,018,879 1,717 4,988 243,375 41,713 

247 

15 16,818,494 6,379 48,832,892 2,637 7,655 241,800 46,442 
2.2 25,107,148 64,765 147,149,476 387 2,272 243,375 4,552 
10 16,436,784 7,557 49,225,842 2,175 6,513 197,242 42,333 

ABySS 

259 

15 2,264,807 3,573 20,68,931 633 579 22,094 668 
63 5.6c 38,385,172 344,938 167,922,256 111 487 154,606 15,745 
99 4.9c 34,464,770 344,938 180,340,024 100 523 254,652 13,703 

4.6 31,625,371 193,070 173,230,698 164 897 238,111 27,066 
10 31,925,142 115,193 160,122,474 277 1,390 137,609 13,257 

127 

15 31,155,644 121,249 145,123,478 257 1,197 109,145 3,417 
2.6 24,473,404 93,236 159,178,884 262 1,707 159,323 2,917 
10 15,327,828 17,643 49,107,159 869 2,783 159,323 27,978 

Velvet 

247 

15 15,088,514 11,075 45,945,149 1,362 4,149 159,323 30,258 
63 5.6 39,536,184 92,498 150,923,645 427 1,632 206,215 18,340 
99 4.9 37,912,050 265,563 175,094,770 143 659 161,631 18,424 

4.6 36,453,910 83,451 157,061,370 437 1,882 144,722 18,720 
10 36,094,908 126,143 151,515,830 286 1,201 109,147 2,419 

Soap 

127 

15 31,333,799 127,446 103,225,180 246 810 109,147 1,018 
Table 2: With the selected k-mer sizes, different coverage-cut-offs were compared acrossthree software tools. Empirical 
optimization of k-mer sizes enhances genome assembly across different software platforms.  
 
Gene Prediction and Automated annotation 
To generate an initial training set, we queried our assemblies 
using CEGMA (version 2.4). To expand the training set, we 
incorporated cDNAs as evidence obtained from nematode.net 
and NCBI. These sets were processed using the AUGUSTUS 
web server (http://bioinf.uni-
greifswald.de/webaugustus/)[12]forpredictinggenes in 
genome ab initio.Additionally, gene annotations generated by 
AUGUSTUS were searched by InterProScan and Blast2GO to 
identify GO terms and gene families. We investigated DNA 
elements and repeat regions using RepeatMasker (version 4.0.5; 
http://repeatmasker.org)[9], and GC contents using a tool set 
of Biopieces (http://www.biopieces.org).  
 
 
 

Results &Discussion: 
Illumina sequencing yielded a total of 42,011,068 paired-end 
sequence reads (21,005,534 from each end), occupying 27.5 
gigabytes in FASTQ format. The average of quality score is 
about 34. The reads were empirically optimized for de novo 
assembly.Under default settings of coverage-cut-off, the overall 
trend of N50 was concave, peaking at 127-mer (Figure 1 
&Table1).We observed that the decrease of N50 within 127-mer 
and the increase of N50 within 247-mer across all the software 
we tested as we increased coverage-cut-offs within each k-mer 
size(Figure 1 &Table 2). The largest N50 within 127-mer was 
still larger than the largest N50 within 247-mer in ABySS. On 
the other hand, the largest N50 within 127-mer was smaller 
than the largest N50 within 247-mer in velvet. When compared 
across software, the largest N50 of 70,023 was achieved by 
ABySS tool at optimized k-mer size of 127 at the coverage 



BIOINFORMATION Open access 
 

ISSN 0973-2063 (online) 0973-8894 (print) 

BIOINFORMATION 12(2): 36-40 (2016) 

40 

  ©2016  

	  

threshold of 4.6. Thus, our empirical optimization achieved 
better assemblies than the commonly-used k-mer predictors. 
For the following further analysis, we elected to use our 
strategy to optimize the M. chitwoodi genome.The genome size 
of this selected assembly is 152,604,382 (150Mb). 
 
At the protein level, CEGMA predicted, in the M. chitwoodi 
genome, 245 (98.79%) of the 248 core proteins, implying near 
100% genome coverage. In addition, it identified 2.23 average 
number of orthologs per CEG and 94.29% had more than one 
potential ortholog. This was supported by blasting CEGMA 
proteins as a query against the assembled contigs as a database, 
resulting in one protein hit with more than two contigs. This 
would imply genome duplication or a genome with high 
heterozygosity, as has been established for M. incognita[13] but 
not for M. hapla[5].The broad applicability of our approach was 
demonstrated in diverse species, including a bacterium and a 
virus. For Neisseriagonorrhoeae, the k-mers predicted by Velvet 
advisor and KmerGenie were 275-mer and 198-mer, 
respectively, yielding N50s of 28,848 and 44,552. In contrast, 
our method returned an N50 of 48,678 using a 155-mer. On 
Camelpox, the Velvet advisor k-mer of 301 resulted in a failed 
assembly. KmerGenie recommended a k-mer of 58, resulting in 
an assembly with an N50 of 179,206. By contrast, our method 
yielded an assembly with an N50 of 190,481.  
 
Conclusion: 
In assembling a whole genome, it is desirable to achieve a 
balance between computational costs and the trade-off 
relationships between k-mer size and its coverage; namely large 
k-mer size with low coverage or a small k-mer size with deep 
coverage. Tools “Velvetadvisor” and “KmerGenie” were 
developed to resolve these problems. As seen in our study, 
however, those tools cannot be directly applied to the 
experimental data. Their predicted k-mer sizes gave de novo 
assembly quite different from our empirically optimized 
assembly of M. chitwoodi. This was confirmed by our 

experiments with two other organisms of bacteria and virus.To 
overcome this, we showed that our approach, using a variant of 
a ‘Simple Grid Search’ to identifyoptimal k-mer size and 
coverage, led to a more complete assembly. The quality of 
assembly was confirmed by CEGMA, predicting 98.79% core 
proteins in the M. chitwoodigenome.By integrating different 
tools of CEGMA and AUGUSTUS, more reliable gene models 
could be generated. This could also improve the completeness 
of subsequent analyses, for example, functional analysis or 
comparative genomics approach. In future studies, we aim to 
examine the evolutionary history of the genus Meloidogyne and 
how that relates to, or is derived from, attributes germane to 
parasitism. For example, because M. chitwoodi and M. hapla are 
sympatric, they presumably have similar gene compliments. 
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