BACK TO CONTENTS   |    PDF   |    PREVIOUS   |    NEXT

Title

Molecular Modeling and docking of Wheat Hydroquinone Glucosyl transferase by using Hydroquinone, Phenyl phosphorodiamate and n-(n butyl) Phosphorothiocic Triamide as Inhibitors

 

Authors

Tayyaba Huma*, Arooma Maryam & Tahir ul qamar

 

Affiliation

Department of Bioinformatics and Biotechnology, Government College University (GCUF), 38000, Faisalabad, Punjab, Pakistan

 

Email

tayyabashahbaz@gmail.com; *Corresponding author

 

Article Type

Hypothesis

 

Date

Received January 01, 2014; Revised January 11, 2014; Accepted January 12, 2014; Published March 19, 2014

 

Abstract

‘In agriculture high urease activity during urea fertilization causes substantial environmental and economical problems by releasing abnormally large amount of ammonia into the atmosphere which leads to plant damage as well as ammonia toxicity. All over the world, urea is the most widely applied nitrogen fertilizer. Due to the action of enzyme urease; urea nitrogen is lost as volatile ammonia. For efficient use of nitrogen fertilizer, urease inhibitor along with the urea fertilizer is one of the best promising strategies. Urease inhibitors also provide an insight in understanding the mechanism of enzyme catalyzed reaction, the role of various amino acids in catalytic activity present at the active site of enzyme and the importance of nickel to this metallo enzyme. By keeping it in view, the present study was designed to dock three urease inhibitors namely Hydroquinone (HQ), Phenyl Phosphorodiamate (PPD) and N-(n-butyl) Phosphorothiocic triamide (NBPT) against Hydroquinone glucosyltransferase using molecular docking approach. The 3D structure of Hydroquinone glucosyltransferase was predicted using homology modeling approach and quality of the structure was assured using Ramachandran plot. This study revealed important interactions among the urease inhibitors and Hydroquinone glucosyltransferase. Thus, it can be inferred that these inhibitors may serve as future anti toxic constituent against plant toxins.

 

Citation

Huma et al. Bioinformation 10(3): 124-129 (2014)
 

Edited by

P Kangueane

 

ISSN

0973-2063

 

Publisher

Biomedical Informatics

 

License

This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License.