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Abstract: 
Since the first discovery in the early 1990’s, the predicted and validated population of microRNAs (miRNAs or miRs) has grown 
significantly. These small (~22 nucleotides long) regulators of gene expression have been implicated and associated with several 
genes in the cancer pathway as well. Globally, the identification and verification of microRNAs as biomarkers for cancer cell types 
has been the area of thrust for most miRNA biologists. However, there has been a noticeable vacuum when it comes to identifying 
a common signature or trademark that could be used to demarcate a miR to be associated with the development or suppression of 
cancer. To answer these queries, we report an in silico study involving the identification of global signatures in experimentally 
validated microRNAs which have been associated with cancer. This study has thrown light on the presence of significant common 
signatures, viz., - sequential and hybridization, which may distinguish a miR to be associated with cancer.  Based on our analysis, 
we suggest the utility of such signatures in the design and development of algorithms for prediction of miRs involved in the cancer 
pathway. 
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Background:  
The discovery of a short RNA product regulating the expression 
of the lin-14 gene in C. elegans [1] opened the door to a new 

family of biologically important RNAs that proved to be crucial 
in fine-tuning the expression patterns of genes. MicroRNAs 
have later been identified as short sequences (18-22 nucleotides) 
of RNA, which act as post-transcriptional regulators by binding 
to complementary sequences on target messenger RNA 
transcripts, in both the plant and animal kingdoms [2–6]. The 
mature miR binds to the 3’Untranslated Region (UTR) [7], 5’ 
UTR [8] and CDS [9] of target mRNA sequences, thereby 
downregulating or upregulating the translation of these genes. 
This downregulation is achieved either by translational 
inhibition, or increased mRNA de-adenylation and 
degradation, or mRNA sequestration [10–12] and upregulation 
by translational enhancement [8]. Recent evidence however 
suggests that the target mRNA may also regulate the level and 
function of miRNAs [3].  

The extent of complementarity of the so-called “seed” region – 
generally positions 2-7 [13,14] of the miR, was thought to be the 
basis for identification of potential mRNA targets by a miR [15, 
16]. However, Chi, Hanon and Darnell [17] present a new 
alternative mode for miRNA target recognition involving 
transitional nucleation, which allows for bulge formation and 
consequent seed propagation. Recent studies [18] also suggest 
that the regions outside the so-called “seed” may also be 
important to consider while ascertaining miR-mRNA binding.  
 
Several reviews and articles have been published relating the 
complicity of certain miRNAs to some cell types [19–21]. Most 
studies aimed at identifying cancer specific miR signatures are 
rather sketchy and specific to a group of related cancerous cells. 
However, there is no literature or work on common 
“signatures” to distinguish a miR to be associated with cancer.  
In an attempt to fill up this void, we have undertaken an 
extensive exercise, involving all the experimentally validated 
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mRNA targets and their corresponding microRNA interactions, 
where the mRNA has an established role in cancer 
development. This dataset was analysed with an aim to 
discover sequential, structural or hybridization properties to 
identify microRNAs associated with the cancer pathway. We 
infer that there are distinct signatures or trademarks that can 
enable us to demarcate a miR to be involved in the cancer 
pathway – features that are present in the mature sequences 
and in the selective arrangement of the seed regions as well. 
 
Methodology:  
For the purpose of the present study, construction of an 
extensive dataset is a prerequisite. A list of genes involved in 
cancer was obtained from Cancer Gene Census Database 
(COSMIC) [22]. From the listed 488 genes, it was observed that 
they contained both oncogenes and tumor suppressors. List of 
genes which were not involved in cancer were obtained by 
calculating their Cancer Linker Degree (CLD) [23]. A jack-knife 
selection of 100 from the total list of 1025 genes would serve as 
the negative dataset. Further, a list of gene targets which have 
documented miR interactions was obtained from miRTARBASE 
(release 2.5) [24], which is accepted as the curated database of 
experimentally validated miRs. A comparison of the list 
obtained from COSMIC with the interaction data from 
miRTARBASE yielded the final list of miRNAs involved in 
cancer. MicroRNA sequences thus filtered were retrieved from 
miRBASE version 17.0 [25], and checked for redundancy. The 
final size of this dataset came to 2926 microRNAs, which were 
experimentally validated and unique. Since the 3'UTR regions 
of genes is the major site for microRNA interaction, we 
obtained the 3'UTR regions for all the 488 genes in question 
from the ENSEMBL-BIOMART portal [26].  
 
A multiple sequence alignment was done using "MultiAlign" 
function of MATLAB with “ExitingGapAlignment” method to 
search for sequence signatures, following our previously 
published method [27]. To find the hybridized structure with 
the best fit in terms of free energy, the miR sequence along with 
their specific 3’UTR sequence were hybridized using the 
RNAHybrid program [28]. Hybridization results obtained from 
RNAHybrid were parsed and analyzed using an indigenous 
Perl script, “PairFinder”, which identifies seed, regions outside 
seeds, mismatches and bulges [http://universe.bits-
pilani.ac.in/goa/sumit/Research]. Regions of complementarity 
having atleast four bases at a stretch were considered to be 
“seed” regions [14]. Since regular Watson-Crick base-pairings, 
especially AU are found to be abundant in functional sites of 
miR-mRNA interactions [18], we wanted to investigate the 
nature of the base pairing both in the seed regions as well in the 
regions outside seed. Finally, seed scores, which are indicators 
of the relative stability of the miR-mRNA interaction were 
obtained by the formula n(AU)+ n(GC) – n(GU), where AU and 
GC are assigned positive scores and GU was assigned a 
negative score.  
 
Results & Discussion: 

Construction of the miR dataset was strictly based on the 
premise that predicted miR will not be, and only experimentally 
validated miR sequence will be considered. Similarly, all miRs 
which do not have an experimentally validated target were also 
excluded from the dataset. Looking for sequence preference in 

the dataset of oncogenically involved miRs, it was evident that 
Uracils are the most preferred nucleotides, whereas Cytosines 
are the least preferred (Figure 1A)  a result which is in complete 
agreement to our previous work with a pilot dataset [27]. Each 
stack of bases in the figure represents the relative frequency of 
the bases at that position [29]. The letter at the top of the stack is 
also the tallest and implies its relative abundance at that 
position. However, the sequence preference for the negative 
dataset (Figure 1B) shows a relative abundance of mainly 
Guanines, Cytosines are fairly represented as well, while 
Uracils are least preferred. 
 

 
Figure 1: Sequence Conservation in miRs associated with cancer 
(A) and in the negative dataset (B). 
 

 
Figure 2: Variation in number of unpaired bases in miRs 
associated with cancer and the negative dataset. The first pair of 
bars stands for the variation in the hybrids having a single 
patch of complementarity (PC), the second for hybrids having 
two patches, and so on. 
 
Multiple sequence analysis with the ‘MultiAlign’ function and 
‘ExistingGapAdjust’ option showed that mature miRs 
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associated with cancer have a sequence signature which can be 
generalized as ‘AG-UU-U-U--CU’. This result was verified 
manually with the regional percentage conservation score data 
and found to be true.  Additionally the region of consensus lies 

exactly in the seed region within the position 2-13 nt. This 
sequence pattern does not have any semblance to the sequences 
in the negative dataset. 

 

 
Figure 3: Distribution of the regular Watson – Crick (WC) and the non-WC base pairings between miR associated with cancer and 
the negative dataset. The panels on the left are for the pairings in the seed region, while the panels on the right are pairings in the 
regions outside the seed (OS). 
 
Pairfinder was used to identify and categorise the seed, regions 
outside seeds, mismatches and bulges in the miRNA interacting 
with the mRNA. Patches of complementarity (PC) are 
demarcated as the seed regions, as well as the regions outside 
seeds where base pairings can occur (but in less than four 
pairs). All bases outside the PCs are unpaired bases. 
Quantitatively, the number of unpaired bases in miRs not 
involved in the cancer pathway was quite higher than those in 
the cancer pathway dataset (Figure 2). For a miRNA-mRNA 
interaction which has a single patch of complementarity to 
those which have multiple PCs, it was always observed that the 
number of unpaired bases is more in the interactions involving 
miRNAs not associated with the cancer pathway. This was a 

pointer to the better complementarity of the miRNA while 
binding to the respective mRNA of genes associated with 
cancer. Looking for the distribution of the regular Watson – 
Crick (WC) and the non-WC base pairings, it was evident that 
AU pairs in the patches of complementarity were much higher 
in the miRs involved in the cancer pathway than in those which 
were not (Figure 3A). Higher average of (A+U) % contents have 
already been cited as an indicator of higher stability [18]. 
However, the scenario is reversed when we considered GC 
pairs. These are more abundant in the interactions of miRNA 
not associated with cancer (Figure 3B), with the difference 
being more pronounced in the regions of complementarity 
outside seeds. The non-WC base pairing, again shows relative 
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abundance in the seed regions of the negative dataset, but are 
negligible in the regions outside the seed when compared to the 
dataset of the miRs associated with cancer (Figure 3C). 
Consequently, the seed score of the cancer associated 
microRNAs is higher on an average (4.108 ± 1.67) than for those 
microRNAs which are not involved in the cancer pathway 
(2.151 ± 1.16). This provides a further confirmation to the 
stability of interactions of those miRNAs which have been 
experimentally validated to be involved with cancer. 
 
Conclusion:  

The work presented in this manuscript highlights the presence 
of trademarks or signatures that can be used to distinguish 
between a microRNA which is associated with cancer from one 
that is not. While sequence signatures show a clear bias towards 
Uracil usage and against Cytosine in cancer associated miRs, 
the trend is reversed in the case of non-oncogenically involved 
miRs. The regions of mRNA-miRNA interaction were 
categorized using the script “Pairfinder” and Patches of 
Complementarity were ascertained to distinguish between 
paired and unpaired regions. Unpaired bases, which contribute 
to weaker binding, were decidedly more abundant in the 
negative dataset. So, by the corollary, the miRs associated with 
the cancer pathway, were found to have stronger interactions 
with their binding mRNAs. To further augment this hypothesis, 
the nature of base pairings in the PCs was investigated and the 
number of AU pairs (which contribute to stability) in both the 
seed regions and the regions of complementarity outside the 
seeds was found to be higher in the cases of miRs involved in 
cancer. 
 
The hypothesis is further strengthened by the seed score – again 
an indicator of stability of interactions – which is found to be 
significantly higher for miRNAs with oncogenic associations. 
Thus, we can safely conclude that miRNAs associated with 
cancer have more stable and stronger interactions with their 
mRNAs, as compared to those which are not associated with 
cancer. While this study was based on the interactions between 
the 3’UTR region of the gene and the microRNA, it is also true 
that some interactions in the 5’UTR and coding sequence of the 
genes need to be analysed as well, and work is being 
undertaken for the same. These findings, along with other 
ongoing searches for thermodyanamic signatures would be 
beneficial to the ultimate goal of constructing an algorithm for 
identification and validation of microRNAs which could be 
associated with cancer. 
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