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Abstract: 
Penicillin-Binding Proteins are peptidases that play an important role in cell-wall biogenesis in bacteria and thus maintaining 
bacterial infections. A wide class of β-lactam drugs are known to act on these proteins and inhibit bacterial infections by disrupting 
the cell-wall biogenesis pathway. Penicillin-Binding proteins have recently gained importance with the increase in the number of 
multi-drug resistant bacteria. In this work, we have collected a dataset of over 700 Penicillin-Binding and non-Penicillin Binding 
Proteins and extracted various sequence-related features. We then created models to classify the proteins into Penicillin-Binding 
and non-binding using supervised machine learning algorithms such as Support Vector Machines and Random Forest. We obtain a 
good classification performance for both the models using both the methods. 
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Background: 
Penicillin-Binding Proteins (PBPs) have been the subject of 
intense research ever since their discovery as the target of the β-
lactam class of drugs. Studies in E.coli K12 have demonstrated 
that PBPs play a major role in cell wall biosynthesis and affect 
the cell shape and cell elongation and also affect cell division 
[1]. By inhibiting PBPs, the β-lactam drugs imbalance the cell 
wall biosynthesis pathway in bacteria and inhibit cell division 
and lyse the cells. Research in this area has gained further 
importance and urgency with various important pathogens 
such as Staphylococcus aureus, Enterococci and Streptococcus 
pneumoniae developing resistance to various β-lactam drugs [2]. 
 
Peptidoglycans are  important constituent of bacterial cell walls. 
In bacteria, PBPs affect cell wall biogenesis by functioning as 
transpeptidases or carboxypeptidases in the later stages of 
peptidoglycan metabolism [3]. The natural substrate of PBPs is 
the D-Ala-D-Ala end of the stem peptides. PBPs polymerize the 

glycan strand (transglycosylation) and cross-link glycan chains 
by virtue of its transpeptidase activity. The natural substrate of 
PBPs is the D-Ala-D-Ala end of the stem peptides, which it 
hydrolyzes (DD-carboxypeptidation). The sensitivity of PBPs to 
penicillin is due to the similarity in structural features shared by 
D-Ala-D-Ala end of the stem and penicillin. This causes the 
PBPs to form an extremely stable acyl bond with penicillin 
leading to impairment of function [4]. The penicillin-
binding/transpeptidase (TP) domains in all PBPs are 
characterized by the presence of three conserved motifs: SXXK 
with the active site serine, SXN, and KT/SG. Out of the three 
conserved motifs, the serine of the SXXK motif is located at the 
catalytic center and is involved in the actual catalysis 
mechanism [5, 3]. 
 
Depending on their molecular mass, PBPs can be categorized 
into high molecular mass (HMM) PBPs and low molecular mass 
(LMM) PBPs (Figure 1). HMM PBPs are multi-modular proteins 
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and consist of a cytoplasmic tail at the N-terminus, a 
transmembrane region and domains coding for 
transglycosylation and transpeptidase activity [6]. HMM PBPs 
can be further subdivided into Class A and Class B depending 
on their structure and catalytic activity. At the C-terminal, both 
the classes have the transpeptidase domain that catalyzes the 
cross-linking of glycan chains. Class A PBPs have an additional 
transglycosylation domain whereas Class B PBPs have a N-
terminal domain. LMM PBPs have a signal peptide at the N-
terminal followed by the transpeptidase domain and the 
transmembrane region at the C-terminal. LMM PBPs are 
involved in the regulation of the crosslinking of the 
peptidoglycans [7]. 
 
Support Vector Machine (SVM) is a popular supervised 
learning algorithm employed in various classification and 
regression tasks. For binary classification SVM employs a 
maximum margin linear hyperplane to separate the data 
belonging to the two classes [8]. For nonlinearly classifiable 
data SVM first transforms the data to a higher dimensional 
feature space and subsequently employs a linear hyperplane. 
Further, to deal with intractability problem SVM employs 
appropriate kernels so that all the computations can be 
performed in the input space itself.  The concept can be easily 
extended to multiclass classification problems. 
 

 
Figure 1: Classification of Penicillin Binding Proteins 
 
Random forest (RF) [9] is a randomly constructed collection of 
independent decision trees. In the RF algorithm, randomness is 
introduced in two ways: while selecting the samples for making 
the dataset for growing the trees and while choosing the 
attributes to generate the subset for node splitting. Such a RF is 
grown in the following manner: For each tree, ‘n’ Bootstrap 
samples (with replacement) are drawn from the original 
training data set to form ‘In Bag’ data for a particular tree, 
where ‘n’ is the size of the training data set. In each of the 
Bootstrap training sets, while generating the ‘In Bag’ data, 
about one-third of the instances are unused. These are called the 
out of bag (OOB) data for that particular tree. Using the CART 
algorithm, the classification tree is then generated using the ‘in 
bag’ data. After all the trees are grown, the kth tree classifies the 
OOB instances for that tree. Subsequently, there is no need for a 
separate test data in RF for checking the overall accuracy of the 
forest. The important features of random forests are that they 
can handle any high dimensional and multi-class data easily. 
Various sequence features of proteins have been previously 
used to define proteins and classify them into their 
corresponding type/subtype. In this work, we extract a number 
of features from a manually-extracted and curated dataset of 
PBPs and pass the features to SVM and RF to generate a model 
that can classify proteins into non-PBPs and PBPs and its 
subtypes.  

Methodology: 
Extraction of PBP sequences and redundancy reduction: Fasta 
sequences of PBPs were extracted from various databases such 
as NCBI, UniPROT and PDB. All the PBP sequences extracted 
were of bacterial origin. To reduce redundancy, we used CD-
HIT, a standard tool for redundancy reduction [10]. After 
redundancy reduction, we had a dataset containing 377, 280, 
122 and 744 sequences of Class A (HMM), Class B (HMM), 
LMM and non-PBP sequences respectively. We created two 
models, Model I for classification of proteins into PBPs and non-
PBPs and Model II for sub-classification of PBPs into the 
respective subtypes. Model 1 consisted of 744 samples of PBP 
and non-PBP proteins. Model 2 consisted of 100 samples each of 
Class A, Class B and LMM PBP proteins.  
 
Feature Extraction 
To classify the proteins, we extracted various features from the 
protein sequences. The features extracted mainly involved 
conserved motifs/patterns, physico-chemical properties, 
Dipeptide / Monopeptide count and pseudo amino acid 
features. Conserved motifs were obtained from previously 
published literature. In total 19 conserved motifs/patterns were 
obtained. Similarly 32 physico-chemical properties were 
collected from various sources such as AAIndex, ExPASy etc. 
Chou's pseudo amino acid features [11-13] were also used in 
our set of extracted features. Additionally, we also calculated 
the amino-acid composition and dipeptide composition. In all, 
we extracted 1199 features, which included 640 physiochemical 
features, 19 motif-related features, 420 dipeptide and 
monopeptide features and 120 psuedo amino acid index 
features. 
 
Support Vector Machine 
To classify the dataset, we used LIBSVM [14], which is a 
popular implementation of Support Vector Machines. We used 
the RBF kernel for classification purposes. We scaled each 
feature of the dataset to a range of -1 to +1 and optimized the 
cost and γ parameters for the dataset using the inbuilt tools. 
This was followed by training SVM to generate the model and 
finding the accuracy for 10-fold cross-validation.  
 
Random Forest 
We also used the Weka implementation of Random Forest to 
classify the dataset [15]. We generated 100 trees and 100 nodes 
on each tree. Using this model of Random Forest, we performed 
10-fold cross-validation on the dataset 
 
Ranking of Features 
In order to select the best features and improve our model, we 
had ranked the features using information gain as the ranking 
metric. Information gain is a measure of the contribution of a 
particular feature to the model. Ranking using information gain 
was done using Weka. After ranking, the top ranked features 
were extracted from the feature set and passed to LIBSVM and 
RF for classification. 
 
Discussion: 
For binary classification of proteins into PBPs and non-PBPs, we 
had employed Model I. In the proposed model, after feature 
extraction, the individual feature sets were passed to LIBSVM 
and RF to create models to classify the proteins into PBPs and 
non-PBPs. We performed 10-fold cross validation using both 
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the supervised learning algorithms and saw that both the 
algorithms gave high classification accuracy. It was seen that 
some properties such as physicochemical properties and PseAA 
gave better classification accuracies as compared to other 
feature sets. In order to increase the CVA and to increase the 
robustness of the model, we pooled all the features and created 
new models. The CVA for this model was better than the 
highest CVA obtained using individual feature sets. Thus, we 
see that pooling the features increases the accuracy and 
robustness of the model. It is often seen that many features are 
noisy and do not contribute to the model. Presence of such 
features often leads to the classifier getting confused and giving 
a model which is not robust or with low accuracy. Elimination 
of such features leads to an increase in the CVA for the dataset. 
In order to eliminate such features, we ranked the features 
using Weka and used the top-ranked features to create a model.  
 
We repeated the same procedure for Model II for sub-
classification of PBPs into its respective subtypes. We first 
extracted the feature sets and created the models using LIBSVM 
and RF. We saw that the Dipeptide/Monopeptide count gave 
the highest classification. On pooling the features, we saw that 
there was a decrease in the classification accuracy. This might 
be attributed to the noisy features from the other feature sets. 
To remove such features, we again rank the features and create 
a model using the top-ranked features. We have reported the 
CVAs obtained in the table. We see that the use of the top-
ranked features generates a model with higher prediction 
accuracy and increased robustness. The CVAs for the individual 
feature sets, the pooled and ranked features obtained using 
SVM and RF for Model I and Model II have been reported in 
Table 1 (see supplementary material). 
 
Conclusion: 
We extracted various features from Penicillin Binding Proteins 
and used these to classify proteins. Using supervised learning 
algorithms, we generated models using a compendium of 
features consisting of different types. However the models did 
not give the best results. We improved the models by removing 
the noisy features and saw that the models we obtained were 
robust models and gave good classification. Thus, we conclude 

that the features that we have extracted are features pertaining 
to penicillin-binding proteins and the models that we have built 
are robust models and can be used for classification of proteins 
into non-penicillin-binding proteins and penicillin binding 
proteins and their subtypes. 
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Supplementary  material: 
 
Table 1: 10-fold Cross-Validation Accuracy for Model I and Model II using SVM and RF 
Feature-Set SVM RF 
Model I : PBP/nonPBP 
Di/Mono 89.04 88.8441 
Phy-Chem 90.5242 89.2473 
PseAA 90.0538 88.6425 
Patterns 86.3575 85.4167 
Pooled 92.4731 90.5242 
Best Ranked 93.75  91.378 
Model II : Class A / Class B /  LMM 
Di/Mono 85.667 84 
Phy-Chem 80 75.333 
PseAA 79 74.333 
Patterns 73 75.333 
Pooled 80 80 
Best Ranked 86.667 81.33 
 
 


