BIOINFORMATION Discovery at the interface of physical and biological sciences

open access

www.bioinformation.net

Volume 9(5)

Hypothesis

In Silico mutagenesis and docking studies of active site residues suggest altered substrate specificity and possible physiological role of Cinnamoyl CoA Reductase 1 (LI-CCRH1)

Prashant Sonawane, Krunal Patel, Rishi Kishore Vishwakarma, Somesh Singh & Bashir Mohammad Khan*

Plant Tissue Culture and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Bashir Mohammad Khan - Email: bm.khan@ncl.res.in; Phone: 912025902220; Fax: 912025902645; *Corresponding author

Received February 04, 2013; Accepted February 11, 2013; Published March 02, 2013

Abstract:

Cinnamoyl CoA reductase (CCR) carries out the first committed step in monolignol biosynthesis and acts as a first regulatory point in lignin formation. CCR shows multiple substrate specificity towards various cinnamoyl CoA esters. Here, *in silico* mutagenesis studies of active site residues of LI-CCRH1 were carried out. Homology modeling based modeled 3D structure of LI-CCRH1 was used as template for *in silico* mutant preparations. Docking simulations of LI-CCRH1 mutants with CoA esters by AutoDock Vina tools showed altered substrate specificity as compared to wild type. The study evidences that conformational changes, and change in geometry or architecture of active site pocket occurred following mutations. The altered substrate specificity for active site mutants suggests the possible physiological role of CCR either in lignin formation or in defense system in plants.

Keywords: Cinnamoyl CoA reductase 1, Mutagenesis, Homology Modeling, Docking Simulations, Substrate Specificity.

Abbreviations: LI-CCRH1, *Leucaena leucocephala* cinnamoyl CoA reductase 1, OPLS, Optimized Potentials for Liquid Simulations, RMSD, Root Mean Square Deviation.

Background:

Lignin, an integral cell wall component of plants, is a phenolic heteropolymer of monolignols namely, *p*-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol **[1]**. Among several genes involved in lignin biosynthesis, Cinnamoyl CoA Reductase (CCR, EC 1.2.1.44) plays a key regulatory role in lignin formation **[2]**. Hydroxycinnamoyl CoA esters of general phenylpropanoid pathway become destined to form respective monolignols after action of CCR. Being entry point enzyme in monolignol biosynthesis, CCR diverts phenylpropanoid derived metabolites towards lignin.

specificity CCR exhibits substrate for different hydroxycinnamoyl CoA esters (p-coumaroyl CoA, caffeoyl CoA, feruloyl CoA, 5-hydroxyferuloyl CoA and sinapoyl CoA); and reduce them to corresponding aldehydes. Cinnamoyl CoA esters are the common precursors of wide range of phenolic compounds and flavonoids. For example, coumaroyl CoA esters are the substrates for chalcone synthase enzyme, the first catalytic step towards secondary metabolites synthesis. Secondary metabolites are considered as the first line of defense against pathogens and diseases. Differential substrate specificity of CCR has been correlated to its exclusive or

redundant function inside the cell either in lignification (feruloyl CoA/ sinapoyl CoA as most preferred substrate) during plant development or in defense mechanism (Coumaroyl CoA as favored substrate) [3-5].

The major limitation in understanding structure-function relationship of CCR is lack of its three dimensional structure till date by any experimental means. Homology modeling provides an alternative approach for constructing three dimensional structures if X-ray crystal structure data is not available. We constructed 3D model of LI-CCRH1 using Dihydroflavanol Reductase from *Vitis vinifera* as template (PDB ID: 2c29). Putative active site residues involved in substrate binding, stabilization and catalysis were identified based on amino acid sequence analysis and docking simulations. These residues

were further investigated and confirmed by site directed mutagenesis and chemical modification studies (data unpublished).

Here, the present study was aimed to investigate the effects of various substitution mutations (*in silico*) of active site residues on substrate specificity of LI-CCRH1. Five different *in silico* mutants were prepared for each amino acid residue and subjected to docking simulations with different hydroxycinnamoyl CoA esters. Based on docking energies obtained, substrate preferences for each mutant were determined. These substrate specificities were used to predict the possible role of *in silico* LI-CCRH1 mutants either in lignin formation or in defense mechanisms.

Figure 1: Cinnamoyl CoA esters binding energy change for *in silico* active site mutants. X-axis represents LI-CCRH1 amino acid mutants generated by homology modeling, using TRITON/MODELLER software, and Y-axis is respective binding energies for CoA esters docked with each individual mutant. The '*' shows best docked substrate with most negative binding energy among particular mutant.

Methodology:

Starting molecule

Three dimensional model of LI-CCRH1, generated using MODELLER 9v9, was used as template for *in silico* mutagenesis studies (Protein Model Database ID: PM0078699).

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 9(5): 224-232 (2013)

Preparation of the in silico mutants

Active site of LI-CCRH1 is made up of ten residues, Phe30, Ile31, Arg51, Asp77, Ser136, Tyr170, Lys174, Val200, Ser200 and His215. Five one-point substitution mutants were prepared for each active site residue. The three dimensional structures of *in*

silico mutants were constructed by homology modeling, using the program TRITON interfaced with MODELLER **[6-8]**. Each mutant homology model was evaluated for its stereo chemical quality using PROCHECK **[9]** and also checked for environmental profile using ERRAT (Structure analysis and verification servers).

Substrate docking

Docking studies were carried out with five different hydroxycinnamoyl CoA esters; 4-coumaroyl CoA, caffeoyl CoA, feruloyl CoA, 5- hydroxyferuloyl CoA, sinapoyl CoA. Substrate molecules were downloaded from Pubchem database on NCBI, and converted to 3D molecules using LigPrep module in the schrodinger suite (LigPrep, version 2.4; Schrodinger: New York, 2010). Protein-ligand complexes were minimized within an RMSD of 0.30 Å with force field OPLS2005 using MacroModel package (MacroModel, version 9.8; Schrodinger: New York, 2010). Protein- ligand docking simulations were conducted using AutoDock Vina tool to prepare the systems for calculations [10]. For each ligand, around 100 docking runs with default parameters were performed treating protein as rigid and the ligand as flexible. The results were visualized using PyMoI (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrodinger, LLC.), wherein all the conformations for each of the ligand were found to be within the cavity of protein indicating that the docking run was free from errors. The conformational clusters with lowest binding energy (Ea) for each ligand were considered for further studies.

Figure 2: Surface representation of the catalytic active site in LI-CCRH1 model (close up view) and docking of cinnamoyl CoA esters in substrate binding pocket of LI-CCRH1; caffeoyl CoA (tv green), feruloyl CoA (yellow), hydroxyferuloyl CoA (blue), coumaroyl CoA (orange) and sinapoyl CoA (cyan). Active site residues are shown in white color.

Results & Discussion: Wild type LI-CCRH1

Docking simulations of different hydroxycinnamoyl CoA esters with LI-CCRH1 showed feruloyl CoA (-9.9 Kcal/mole) as most favored substrate over others (-8.8 to -9.7 Kcal/mole) (data unpublished). Better affinity of LI-CCRH1 towards feruloyl CoA indicates its possible role in lignification during growth and development of plants (Figure 2).

Phenylalanine30

Phe30 residue interacts with CoA esters via its main chain function and takes part in substrate binding or stabilization. Five mutants, namely F30C, F30L, F30S, F30V and F30Y were

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 9(5): 224-232 (2013) generated by homology modeling using TRITON software. **Table 1 (see supplementary material)** shows a comparison of the MODELLER produced mutants with respect to RMSD. Docking studies showed that F30S and F30V showed feruloyl CoA as favored substrate; while mutants F30L, F30S and F30Y showed preference for coumaroyl CoA **Table 2 (see supplementary material)**. The main chain function of all mutants was expected to remain same even after mutation. Thus, there should be conformational alterations or change in geometry of active site following mutations resulting in differential substrate specificity (**Figure 1 & 3 A,B**). The RMSD values for phe30 mutants lay between 0.107-0.125 Å. Mutants F30C and F30V may play a role in lignin biosynthesis; while F30S, F30Y and F30L could be important for defense cascades **I3-5I**.

Isoleucine31

Ile31 residue also plays role in substrate binding through its main chain function. Mutant I31F showed more negative binding energy for hydroxyferuloyl CoA; while I31M exhibited equal affinity for coumaroyl and hydroxyferulol CoA. Mutant I31N demonstrated better affinity for sinapoyl CoA over others. Substitution with serine and threonine (I31S and I31T) resulted in feruloyl CoA as preferred substrate with equal binding energy (-10 Kcal/mole) (Figure 1, Table 2). In silico mutations of Ile31 lead to overall change in architecture of active site pocket (Figure 3 C,D). Slightly higher RMSD value was observed for mutant I31M compared to other Ile31 mutants (Table 1).

Arginine51

In wild type LI-CCRH1, Arg51 interacts with CoA esters via its main chain as well as side chain and plays important role in substrate binding or stabilization. In mutant R51G, coumaroyl CoA showed most favorable binding energy (-9.7 Kcal/mole). Substitution of Arg51 by glycine altered side chain from polar charged to small compact neutral residue, resulting in marked decrease in accessible surface area and leads to loss of interactions with substrate (Table 2). Similar decrease in surface area was observed with mutants R51I, R51S and R51T except for R51K, which showed similar area as that of wild type. Except R51K, all three remaining mutants have shown better preference for coumaroyl CoA; and thus could play role in defense. Mutant R51K showed affinity towards caffeoyl CoA (Table 2) (Figure 1 & 3 E, F). Thus, all mutants R51G, R51I, R51S, R51K and R51T may function in defense [3, 4].

Aspartate77

No Asp77 interactions were observed during docking of LI-CCRH1 with different CoA esters; but site directed mutagenesis and chemical modification confirmed its role in CCR catalyzed reaction (data not shown). D77 is present partially on surface and in proximity of R51. Substitution with alanine and glycine resulted in slight decrease in surface areas, but substrate affinities differ for both these mutants; D77A showed specificity towards coumaroyl CoA while D77G displayed equal affinity for Caffeoyl CoA and sinapoyl CoA (Figure 1, Table 2). This may be due to change in structure of binding pocket and allowing better conformations to interact with other amino acids. Mutant D77H showed more negative binding energy for sinapoyl CoA (-9.7 Kcal/mol). D77N has same substrate affinity (feruloyl CoA) as that of wild type. In mutation D77Y, change

from D to Y altered small polar side chain to bulky hydrophobic aromatic ring, induced a significant increase in accessibility for

surface area **(Figure 3 G,H).** RMSD values for all mutants are very comparable to each other (0.104-0.122 Å) **(Table 1).**

Figure 3: The best docked structures of cinnamoyl CoA esters into the active site of *in silico* LI-CCRH1 mutants at various positions. Mutated LI-CCRH1 molecule (red) is represented as solid surface, whereas docked structure is shown as sticks. Mutated amino acid is displayed in blue color and remaining active site residues are shown in white. (A) F30C mutant, feruloyl CoA (B) F30Y mutant, coumaroyl CoA (C) I31F mutant, coumaroyl CoA (D) I31N mutant, sinapoyl CoA (E) R51I mutant, coumaroyl CoA (F) R51K mutant, caffeoyl CoA (G) D77H mutant, sinapoyl CoA (H) D77Y mutant, coumaroyl CoA.

Serine136

In wild type LI-CCRH1, Ser136 plays a key role in catalysis and is a part of reaction centre. Mutations in ser136 caused change in the geometry of active site and non specific interactions with substrates have been increased. Ser136 is buried in the substrate binding pocket and mutations resulted in partial or complete exposure of mutant residue. Coumaroyl CoA was found to be better substrate for mutant S136A and S136C. S136Y showed preference for caffeoyl CoA and, S136P along with S136T showed favored specificity for feruloyl CoA (Table 2) (Figure 1 and 4 A,B). Mutants S136P and S136T could have functional role in lignin formation; while mutants S136Y, S136A and S136C might be involved in defense [3-5].

Tyrosine170

Tyr170 acts as catalytic base and accepts hydride from NADPH and transfers to Serine residues in catalysis reaction. Tyr170 is completely buried in active site pocket and is surrounded by Lys174, Ser212, His215 and Ser136 catalytic residues. Mutant Y170C displayed less number of interactions compared to wild type; still sufficient for displaying affinity towards coumaroyl CoA. Mutant Y170D exhibited better binding energy for feruloyI CoA (-9.7 Kcal/mol) (Figure 1). In case of mutant Y170D, increase in number of hydrogen bond interactions with Arg51 was observed. Arg51 is distantly present from Y170D. This indicates the drastic change in architecture of binding pocket and significant changes in pKa values of pocket. Y170F and Y170N showed preference for coumaroyI CoA; while Y170H demonstrated affinity for feruloyI CoA (Table 2 & Figure 4 C, D).

Lysine174

Lys174 residue promotes hydride transfer in CCR mediated reduction reactions. Docking simulations of K174E and K174T mutants showed coumaroyl CoA as preferred substrate (-10 Kcal/mole) (Figure 1 & Table 2). On the other hand, K174M mutant is specific for feruloyl CoA; while K174N and K174R have favorable binding energy for hydroxyferuloyl CoA (Figure 1). Thus, mutant K174R may play role in both, that is, either in lignin biosynthesis or defense system [3, 4]. Lys174 is deeply buried in active site pocket and same conformational profile was also observed in all mutants (Figure 4 E,F). Mutant K174R

shows the lowest RMSD (0.097 Å) among the all mutants generated (Table 1).

Valine200

Replacement of Val200 with glycine and alanine displayed substrate specificity towards coumaroyl CoA. These substitutions have not altered aliphatic side chain profile of mutant residues. On the other hand, substitution of Valine by positively charged Aspargine resulted in charge redistribution along the active site pocket and allowed favorable conformational changes for substrate binding (feruloyI CoA). V200M residue exhibited increased affinity for coumaroyI CoA (Table 2 & Figure 4 G,H). V200E mutant could possibly be involved in monolignol biosynthesis. Mutants V200G, V200M, V200A may take part in secondary metabolite synthesis [3, 4] (Supplementary Figure S1).

Serine212

Ser212 residue is involved in proton shuttle mechanism and thus participates in CCR catalysis. Mutations in Ser residue (deeply buried) by Gly, Ile, Glu and Arg showed partial or complete exposure of mutated residues. These exposed mutated residues altered substrate binding conformation and favored coumaroyl CoA as substrate (Figure 1 & Supplementary Figure S2 A, B). Thus, these structural changes altered shape of active site pocket and assisted more number of interacting residues with maximum interactions. S212T has shown feruloyI CoA as promising substrate (Figure 1 & Supplementary Figure S2 C) (Table 2). All mutants of ser212 except S212T may function in secondary metabolism, ultimately in providing defense [3-5].

Histidine215

His215 also takes part in CCR mediated reduction reactions either in substrate binding or catalysis. H215R and H215Y mutants showed significant increase in surface area due to bulky and long side chains. Both mutants showed same binding energy (-10.5 Kcal/mol), but for different substrates; that is, coumaroyl CoA is specific for H215R and hydroxyferuloyl CoA for H215Y (Figure 1 & Supplementary Figure S2 E, F). Replacement of His215 by Asp and Gln demonstrated affinity for coumaroyl CoA (Figure 1). Lastly, replacement of His with Leu displayed preference for sinapoyl CoA (Table 2) (Figure 1 & Supplementary Figure S2 D). Thus, only H215L mutant may possibly take part in lignification; while remaining mutants might prefer secondary metabolite pathway [3, 4].

Figure 4: Cinnamoyl CoA esters conformations (sticks) in the active site of mutants LI-CCRH1 (surface, red). Color code for mutated and remaining active site residue is same as mentioned in Figure 3 (A) S136C mutant, coumaroyl CoA (B) S136Y mutant, caffeoyl CoA (C) Y170F mutant, coumaroyl CoA (D) Y170H mutant, coumaroyl CoA (E) K174E mutant, coumaroyl CoA (F) K174N mutant, hydroxyferuloyl CoA (G) V200L mutant, hydroxyferuloyl CoA (H) V200M mutant, coumaroyl CoA. Lysine174 residue is deeply buried inside the binding pocket, thus it is not visible in E, F surface diagrams.

Conclusion:

In conclusion, in silico mutation analysis of active site residues of LI-CCRH1 displayed differential substrate specificity. This in ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 9(5): 224-232 (2013)

differential substrate specificity mainly was due to conformational changes in substrate binding pocket or change geometry/architecture/shape of active site or

increase/decrease in number of interactions following mutations or charge redistribution along active site and physiochemical properties of mutated residues. On the basis of substrate specificity, possible physiological role of mutant CCRs could be predicted.

Acknowledgement:

This work was supported by Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Reference:

- [1] Boerjan J et al. Annu Rev Plant Biol. 2003 54: 519 [PMID: 14503002]
- [2] Lacombe E et al. Plant J. 1997 11: 429 [PMID: 9107033]

- [3] Zhou R et al. Proc Natl Acad Sci U S A. 2010 1071: 17803 [PMID: 20876124]
- [4] Escamilla-Trevino L *et al. New phytol.* 2010 **185:** 143 [PMID: 19761442]
- [5] Li L et al. Plant Cell Physiol. 2005 46: 1073 [PMID: 15870094]
- [6] Eswar N et al. Curr Protoc Bioinformatics. 2006 15: 5.6.1 [PMID: 18428767]
- [7] Sali A & Blundell TL, J Mol Biol. 1993 234: 779 [PMID: 8254673]
- [8] Prokop M et al. Bioinformatics. 2008 24: 1955 [PMID: 18603567]
- [9] Laskowski RA et al. J Biomol NMR. 1996 8: 477 [PMID: 9008363]
- [10] Trott O & Olson A, J Comput Chem. 2010 31: 455 [PMID: 19499576]

Edited by P Kangueane

Citation: Sonawane et al. Bioinformation 9(5): 224-232 (2013)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited

Supplementary material:

Figure S1: Cinnamoyl CoA esters binding energy for in silico Val200 mutants. X-axis represents V200 mutants generated by homology modeling, using TRITON/MODELLER software, and Y-axis is respective binding energies for CoA esters docked with each individual mutant. The '*' shows best docked substrate with most negative binding energy among particular mutant.

Figure S2: Docking of cinnamoyl CoA esters in active site of CCRH1 mutants. A) S212I mutant, coumaroyl CoA (B) S212R mutant, coumaroyl CoA (C) S212T mutant, feruloyl CoA (D) H215L mutant, sinapoyl CoA (E) H215R mutant, coumaroyl CoA (F) H215Y mutant, hydroxyferuloyl CoA.

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 9(5): 224-232 (2013)

Table 1	DeatMaan	Course Doudations			mendulos disativa site multante af LLCCDL1
Table 1	Root iviean 3	square Deviations	RIVISD) OF TRITUN/IVIODELLER	produced active site mutants of LI-CCRHT.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Residues	Mutants	RMSD (Å)
F30L 0.119 F30S 0.107 F30Y 0.122 F30Y 0.120 131F 0.107 131M 0.144 131N 0.115 Ile31 131S 131S 0.110 131T 0.104 R51G 0.153 R51I 0.116 R51T 0.099 D77A 0.122 D77A 0.122 D77A 0.122 D77H 0.112 D77G 0.122 D77H 0.104 S136A 0.144 S136A 0.144 S136A 0.134 Y170C 0.134 Y170C 0.134 Y170D 0.124 Y170D 0.124 Y170F 0.114 Y170F 0.114 Y170F 0.114 Y170F 0.114 Y170F 0.114 Y170F 0.11		F30C	0.125
F30S 0.107 F30V 0.122 F30Y 0.120 F30Y 0.120 F30Y 0.120 F30Y 0.120 F30Y 0.120 F30Y 0.120 F31M 0.144 J31N 0.115 III 0.107 F31S 0.110 R51G 0.153 R51H 0.115 R51K 0.138 Arg51 R51S 0.112 D77A 0.112 0.104 Ser136 0.134 0.144 S136A 0.144 1.11 Asp77 D77N 0.104 S136A 0.144 1.11 Asp77 D77N 0.104 S136A 0.134 1.11 Asp77 D71N 0.114 Tyr170 1.131 S136P V170C 0.134 1.11 K174N 0.115 1.11 Y170P		F30L	0.119
Phe30 F30V 0.122 F30Y 0.120 I31F 0.107 I31M 0.114 I31N 0.115 IB31 131S 0.110 I31T 0.104 R51G 0.153 R51I 0.115 Arg51 R51S 0.116 R51S 0.116 R51T 0.099 D77A 0.122 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 S136A 0.144 S136A 0.144 S136A 0.144 S136C 0.120 S136P 0.134 Y170C 0.134 Y170C 0.134 Y170F 0.114 Tyr170 Y170H 0.114 Y170F 0.114 Y170F 0.114 Y170F 0.114 Y170F 0.114 Y170F 0.114 <		F30S	0.107
F30Y 0.120 131F 0.107 131M 0.144 131N 0.115 131S 0.110 131T 0.104 R51G 0.153 R51I 0.115 R51K 0.138 Arg51 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 S136A 0.144 S136C 0.122 D77H 0.111 Asp77 D77N 0.104 S136A 0.144 S136P 0.134 Y170C 0.134 Y170C 0.134 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174R 0.097 Y170H 0.123 V200E 0.128 <	Phe30	F30V	0.122
I31F 0.107 I31M 0.144 I31N 0.115 I31S 0.110 I31T 0.104 R51G 0.153 R51I 0.115 R51K 0.138 Arg51 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 Si36C 0.120 Si36C 0.120 Si36C 0.134 Y170D 0.124 Y170F 0.114 Y200E 0.128 V200E 0.128 V200E 0.128 <td></td> <td>F30Y</td> <td>0.120</td>		F30Y	0.120
131M 0.144 131N 0.115 131S 0.110 131T 0.104 R51G 0.153 R51I 0.115 R51K 0.138 Arg51 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.104 Saf6C 0.120 D77H 0.104 Saf6C 0.120 Saf6C 0.120 Saf6C 0.120 Saf6C 0.120 Saf6C 0.120 Saf6C 0.134 Saf6C 0.134 Y170C 0.134 Y170D 0.124 Y170F 0.114 Tyr170 Y170H K174K 0.097 K174K 0.017 Lys174 K174K K174K 0.017 V200E 0.132 V200C 0.132		131F	0.107
IIB31 I31N 0.115 IIB31 I31S 0.110 IIB31 I31S 0.104 IIB31 R51G 0.153 R511 0.115 R51 R511 0.099 0.112 D77G 0.122 0.111 Arg51 D77H 0.112 D77H 0.114 111 Asp77 D77N 0.104 S136C 0.120 134 Ser136 S136T 0.134 Y170C 0.134 134 Y170C 0.134 134 Y170F 0.114 115 Y170F 0.114 119 Y170N 0.108 128 Y200E 0.128 129 Y200E 0.128 120 Y200F 0.116 121 Y200F 0.128 120 Y200F<		I31M	0.144
IIe31 I31S 0.110 I31T 0.104 R51G 0.153 R51I 0.115 R51K 0.138 Arg51 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.104 Si36A 0.144 S136C 0.120 Si36A 0.144 S136C 0.120 Si36P 0.134 Y170C 0.139 Y170C 0.139 Y170F 0.114 Tyr170 Y170H 0.115 Y170F 0.114 Tyr170 Y170F 0.114 Y170F 0.114 Y170N 0.140 K174N 0.118 V200E 0.128 V200E 0.128 V200E 0.128 V200E 0.116 V200E 0.128 V200C 0.116 V200E 0.128 V200A 0.116 <t< td=""><td></td><td>I31N</td><td>0.115</td></t<>		I31N	0.115
I31T 0.104 R51G 0.153 R51I 0.115 R51K 0.138 Arg51 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 Si36A 0.144 S136C 0.120 S136P 0.134 Ser136 S136T 0.134 Y170C 0.139 Y170C 0.139 Y170F 0.114 Tyr170 Y170F 0.114 Y170F 0.114 Y170F 0.114 Y170N 0.140 K174E 0.153 K174N 0.108 Lys174 K174R 0.097 K174N 0.108 Lys174 K174R 0.097 K174N 0.108 V200E 0.132 V200E 0.132 V200A<	lle31	I31S	0.110
R51G 0.153 R511 0.115 R51K 0.138 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.114 Asp77 D77N 0.104 S136A 0.144 S136C 0.120 S136P 0.134 Ser136 S135T 0.134 Y170C 0.134 Y170C 0.134 Y170C 0.134 Y170C 0.134 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.140 K174M 0.115 K174M 0.118 V200E 0.128 V200G 0.116 V200E 0.128 V200C 0.132 V200A 0.116 V2120 V200A 0.116 V2120 V200A 0.116 V2120 V2120 </td <td></td> <td>I31T</td> <td>0.104</td>		I31T	0.104
R511 0.115 R51K 0.138 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 S136A 0.144 S136A 0.144 S136P 0.134 Ser136 S136T 0.131 Ser136 S136T 0.134 Y170C 0.124 Y170C Y170D 0.124 Y170F 0.114 Tyr170 Y170F 0.114 K174E 0.153 K174M 0.108 Lys174 K174R 0.097 K174N 0.108 V200E 0.132 V200E 0.132 V200C 0.132 V200C 0.132 V200A 0.116 V200A 0.116 V2120 V200A 0.116 V2120 V200A		R51G	0.153
Arg51 R51K 0.138 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 S136A 0.144 S136C 0.120 S136P 0.134 Ser136 S136T 0.134 Y170C 0.124 Y170D 0.124 Y170D 0.124 Y170D 0.124 Y170D 0.140 K174R 0.097 K174R 0.197 Y170N 0.140 K174R 0.097 K174R 0.132 V200E 0.132 V200A 0.116 S212Q		R51I	0.115
Arg51 R51S 0.116 R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.104 Sap77 D77N Asp77 D77N S136A 0.144 S136C 0.120 Saf6P 0.134 Ser136 S136T 0.131 Y170C 0.124 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174R 0.097 K174N 0.108 Lys174 K174R 0.097 K174R 0.097 K174R 0.097 K174R 0.097 K174R 0.097 K174R 0.097 V200E 0.132 V200E 0.132 V200E 0.132 V200E 0.132 V200E 0.132 V200A 0.116 S212I 0.114 S212Q 0.114		R51K	0.138
R51T 0.099 D77A 0.112 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 S136A 0.144 S136C 0.120 S136P 0.134 Ser136 S136T 0.134 Y170C 0.139 Y170C Y170D 0.124 Y170C Y170F 0.114 Y170F Tyr170 Y170H 0.115 Y170N 0.140 K174N K174N 0.119 K174N Lys174 K174R 0.097 K174N 0.108 V200E V200E 0.128 V200G 0.116 V200G 0.116 V200A 0.116 V200A 0.116 V2120 V200A V200A 0.116 V2120 0.139 Ser212 S212R 0.130 S212V 0.139 Ser212	Arg51	R51S	0.116
D77A 0.112 D77G 0.122 D77H 0.111 Asp77 D77N 0.104 S136A 0.144 S136C 0.120 S136P 0.134 S136P 0.134 Y170C 0.134 Y170C 0.134 Y170D 0.124 Y170F 0.114 Tyr170 Y170F Y170N 0.140 K174M 0.115 Y170N 0.140 K174M 0.119 K174M 0.108 Lys174 K174R 0.097 K174M 0.123 V200E 0.128 V200G 0.116 V200G 0.116 V200A 0.116 S212G 0.169 S212I 0.114 S212Q 0.130 S212I 0.114 S212Q 0.139 Ser12 S212R 0.130 S212T<	0	R51T	0.099
Asp77 D77G 0.122 D77H 0.111 D77N 0.104 D77Y 0.104 S136A 0.144 S136C 0.120 S136F 0.134 Ser136 S136F 0.134 Y170C 0.134 Y170C 0.134 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.153 K174M 0.119 K174N K174N 0.108 V200E Lys174 K174R 0.097 K174N 0.132 V200E V200C 0.132 V200L V200C 0.132 V200G V200A 0.116 S212G V200A 0.116 S212G Ser212 S212R 0.130 S212F 0.121 H14 S212R 0.130 S212F S212F 0.121 H215D H215D 0.117 H215D <td></td> <td>D77A</td> <td>0.112</td>		D77A	0.112
Asp77 D77H 0.111 D77N 0.104 D77Y 0.104 \$136A 0.144 \$136C 0.120 \$136F 0.134 Ser136 \$136F 0.134 \$136P 0.134 \$136P 0.134 \$136P 0.134 \$136Y 0.134 \$170D 0.124 \$170D 0.124 \$170D 0.140 \$170D 0.140 \$170D 0.140 \$170D 0.140 \$170D 0.140 \$170N 0.140 \$17170 \$170H 0.115 \$170N 0.140 \$174M 0.119 \$174M 0.108 \$200 0.128 \$200E 0.128 \$200E 0.132 \$212G 0.160 \$212G 0.169 \$212I 0.114 \$212Q 0.132 \$212Q 0.132 \$212Q 0.139 \$2		D77G	0.122
Asp77 D77N 0.104 D77Y 0.104 S136A 0.144 S136C 0.120 S136P 0.134 Ser136 S136T 0.131 S136P 0.134 Y170C 0.139 Y170D 0.124 Y170F 0.114 Tyr170 Y170F Y170N 0.140 K174E 0.153 K174N 0.108 Lys174 K174R 0.097 K174N 0.116 V200E 0.128 V200E 0.132 V200G 0.116 V200A 0.116 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212F 0.121 H215D 0.117 H215D 0.117 H215Q 0.139		D77H	0.111
D77Y 0.104 \$136A 0.144 \$136C 0.120 \$136P 0.134 \$er136 \$136T 0.131 \$136Y 0.134 Y170C 0.139 Y170D 0.124 Y170F 0.114 Tyr170 Y170F Y170F 0.114 Tyr170 Y170H Y170N 0.140 K174K 0.153 K174N 0.108 Lys174 K174R V200E 0.128 V200G 0.116 V200C 0.132 V200A 0.116 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215D 0.139 H15215 H215R 0.125	Asp77	D77N	0.104
Similar 0.144 Similar 0.120 Similar 0.134 Ser136 Similar Similar 0.131 Similar 0.134 Y170C 0.134 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200G 0.116 V200L 0.132 Val200 V200A 0.116 S212I 0.114 S212I 0.114 S212I 0.114 S212I 0.116 S212I 0.117 S212I 0.139 S212I 0.139 S212I 0.121 H215D 0.117		D77Y	0.104
Ser136 \$136C 0.120 Sindep 0.134 Ser136 \$136T 0.131 Sindep 0.134 Y170C 0.139 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200G 0.116 V200L 0.132 Val200 V200A 0.116 S212I 0.114 S212G 0.169 S212I 0.116 S212I 0.1139 Ser212 S212R 0.139 Ser212 S212R 0.139 S212T 0.121 14215D H215D 0.117 14215L H215Q 0.139 142		S136A	0.144
Ser136 \$136P 0.134 Ser136 \$136T 0.131 \$136Y 0.134 Y170C 0.139 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.153 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M 0.111 V2020A 0.116 S212G 0.169 S212I 0.114 S212Q 0.130 S212I 0.114 S212Q 0.130 S212I 0.116 S212I 0.117 H215D 0.117 H215D 0.117 H215Q 0.139 His215 H215R 0.125		S136C	0.120
Ser136 \$136T 0.131 \$136Y 0.134 Y170C 0.139 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.153 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M 0.111 V2020A 0.116 S212G 0.169 S212I 0.114 S212Q 0.130 S212I 0.114 S212I 0.116 S212I 0.116 S212I 0.116 S212I 0.116 S212I 0.116 S212I 0.117 H215D 0.117 H215D 0.117 H215D 0.108 H215Q 0.139		S136P	0.134
S136Y 0.134 Y170C 0.139 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215D 0.117 H215Q 0.139	Ser136	S136T	0.131
Y170C 0.139 Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212R 0.130 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215Q 0.139 His215 H215R 0.125		S136Y	0.134
Y170D 0.124 Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.132 V200G 0.116 V200L 0.132 Val200 V200A 0.116 Ser212 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215D 0.117 H215Q 0.139		Y170C	0.139
Y170F 0.114 Tyr170 Y170H 0.115 Y170N 0.140 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.132 V200G 0.116 V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215Q 0.139		Y170D	0.124
$\begin{array}{cccccccc} Tyr170 & Y170H & 0.115 \\ Y170N & 0.140 \\ K174E & 0.153 \\ K174M & 0.119 \\ K174N & 0.108 \\ Lys174 & K174R & 0.097 \\ K174T & 0.123 \\ V200E & 0.128 \\ V200G & 0.116 \\ V200L & 0.132 \\ Val200 & V200M & 0.111 \\ V200A & 0.116 \\ S212G & 0.169 \\ S212I & 0.114 \\ S212N & 0.139 \\ Ser212 & S212R & 0.130 \\ S212T & 0.121 \\ H215D & 0.117 \\ H215L & 0.108 \\ H215Q & 0.139 \\ His215 & H215R & 0.125 \\ \end{array}$		Y170F	0.114
Y170N 0.140 K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.130 S212T 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215D 0.117 H215Q 0.139	Tyr170	Y170H	0.115
K174E 0.153 K174M 0.119 K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212V 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215D 0.1139 H1s215 H215R 0.125		Y170N	0.140
K174M0.119K174N0.108Lys174K174RK174T0.123V200E0.128V200G0.116V200L0.132Val200V200MV200A0.111V200A0.116S212G0.169S212I0.114S212N0.139Ser212S212RL1200.121H215D0.117H215D0.117H215D0.139His215H215R0.125		K174E	0.153
K174N 0.108 Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215Q 0.139 His215 H215R 0.125		K174M	0.119
Lys174 K174R 0.097 K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215Q 0.139 His215 H215R 0.125		K174N	0.108
K174T 0.123 V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.117 H215Q 0.139 His215 H215R 0.125	Lys174	K174R	0.097
V200E 0.128 V200G 0.116 V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.108 H215Q 0.139 His215 H215R 0.125		K174T	0.123
V200G 0.116 V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.130 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.108 H215Q 0.139		V200E	0.128
V200L 0.132 Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215D 0.108 H215Q 0.139		V200G	0.116
Val200 V200M 0.111 V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215L 0.108 H215Q 0.139		V200L	0.132
V200A 0.116 S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215L 0.108 H215Q 0.139	Val200	V200M	0.111
S212G 0.169 S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215L 0.108 H215Q 0.139 His215 H215R 0.125		V200A	0.116
S212I 0.114 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215L 0.108 H215Q 0.139 His215 H215R 0.125		S212G	0.169
Ser212 S212N 0.139 Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215L 0.108 H215Q 0.139 His215 H215R		S212I	0.114
Ser212 S212R 0.130 S212T 0.121 H215D 0.117 H215L 0.108 H215Q 0.139 His215 H215R 0.125	0 010	S212N	0.139
H215D 0.121 H215D 0.117 H215L 0.108 H215Q 0.139 His215 H215R 0.125	Ser212	S212R	0.130
H215D 0.117 H215L 0.108 H215Q 0.139 His215 H215R 0.125		52121	0.121
H215L 0.108 H215Q 0.139 His215 H215R 0.125		H215D	0.117
H215Q 0.139 His215 H215R 0.125		H215L	0.108
HISZ10 HZ15K 0.125		H215Q	0.139
H215V 0.110	LI212	П213K H215V	0.120

 Table 2:
 Summary from docking simulations of LI-CCRH1 mutants with five different cinnamoyl CoA esters. For each mutant, more negative binding energy (preferred substrate) is indicated in red color.

Active site residues	Mutants	Binding Energies (Kcal/mole)					
in LI-CCRH1	LI-CCRH1	Caffeoyl	Feruloyl CoA	Hydroxy-	Coumaroyl	Sinapoyl	
		CoA	5	Feuloyl CoA	CoA	CoA	
Phe30	F30C	-9.4	-9.8	-8.7	-9.4	-8.9	
	F30L	-9.4	-10.3	-9.7	-10.5	-9.4	
	F30S	-9.1	-9.3	-9.7	-10.2	-9.1	
	F30V	-9.3	-9.4	-9.1	-9.0	-9.1	
	F30Y	-9.3	-9.1	-8.9	-9.6	-9.5	
lle31	I31F	-9.2	-8.9	-9.8	-9.5	-9.2	
	I31M	-9.2	-9.4	-9.7	-9.7	-9.2	
	131N	-9.4	-9.7	-9.3	-10.0	-10.1	
	I31S	-9.3	-10.0	-8.8	-9.0	-9.3	
	I31T	-9.0	-10.0	-9.2	-9.8	-9.3	
Arg51	R51G	-8.9	-9.1	-8.5	-9.7	-9.0	
0	R51I	-9.1	-9.1	-8.9	-9.6	-9.5	
	R51K	-10.0	-9.4	-9.9	-9.5	-9.5	
	R51S	-8.7	-9.6	-9.1	-9.8	-9.2	
	R51T	-9.4	-9.0	-9.1	-9.8	-9.4	
Asp77	D77A	-9.4	-9.8	-9.2	-10.0	-9.1	
•	D77G	-9.7	-9.6	-9.4	-9.5	-9.7	
	D77H	-8.9	-9.2	-9.7	-9.7	-9.8	
	D77N	-9.4	-10.2	-9.4	-8.9	-9.2	
	D77Y	-9.2	-8.9	-9.1	-10.1	-9.4	
Ser136	S136A	-9.0	-9.1	-9.5	-9.7	-9.4	
	S136C	-9.3	-9.3	-9.4	-9.6	-9.2	
	S136P	-10.2	-10.3	-9.8	-9.6	-9.3	
	S136T	-9.1	-9.6	-9.4	-9.5	-8.7	
	S136Y	-9.2	-8.7	-8.1	-8.8	-9.0	
Tyr170	Y170C	-8.8	-9.2	-8.7	-9.3	-9.1	
•	Y170D	-8.7	-9.7	-9.2	-9.0	-8.4	
	Y170F	-9.2	-9.1	-9.1	-9.3	-8.9	
	Y170H	-9.0	-9.5	-8.8	-8.9	-9.2	
	Y170N	-9.8	-8.8	-8.8	-9.9	-9.1	
Lys174	K174E	-9.1	-9.5	-9.8	-10.0	-9.9	
•	K174M	-9.6	-9.8	-9.6	-9.8	-9.6	
	K174N	-9.9	-9.3	-10.5	-10.2	-10.3	
	K174R	-9.3	-9.1	-9.9	-9.9	-9.3	
	K174T	-9.5	-9.2	-9.3	-9.9	-9.7	
Val200	V200E	-9.7	-10.2	-9.6	-9.8	-9.8	
	V200G	-9.4	-9.6	-9.2	-10.1	-9.4	
	V200L	-9.3	-9.3	-9.7	-9.4	-9.6	
	V200M	-9.0	-9.7	-9.8	-9.9	-9.2	
	V200A	-9.4	-9.6	-10.1	-10.5	-10.2	
Ser212	S212G	-9.1	-9.0	-9.3	-9.8	-9.6	
	S212I	-9.4	-9.7	-9.6	-10.3	-10.2	
	S212N	-9.8	-10.0	-8.9	-10.3	-9.6	
	S212R	-9.9	-10.0	-10.1	-10.5	-9.8	
	S212T	-9.7	-10.0	-9.8	-9.5	-9.6	
His215	H215D	-10.3	-9.8	-9.6	-10.5	-9.9	
	H215L	-9.5	-9.6	-9.2	-9.5	-9.7	
	H215Q	-9.2	-10.0	-9.0	-10.1	-9.5	
	H215R	-9.5	-9.7	-9.4	-10.5	-9.7	
	H215Y	-10.4	-10.1	-10.5	-9.9	-10.1	