Title |
Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses |
Authors |
Paula M Villegas-Rosales1, Alfonso Méndez-Tenorio2, Elizabeth Ortega-Soto1, Blanca L Barrón1* |
Affiliation |
1Microbiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, México D.F. 11340, México; 2Biochemestry Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, México D.F. 11340, México
|
|
bbarron@ipn.mx; *Corresponding author
|
Article Type |
Hypothesis
|
Date |
Received June 04, 2012; Accepted June 08, 2012; Published June 16, 2012
|
Abstract |
Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select of the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery.
|
Keywords |
Dengue virus, siRNA, NS4B and NS5 proteins
|
Citation |
Villegas-Rosales et al.
Bioinformation 8(11): 519-522 (2012) |
Edited by |
P Kangueane
|
ISSN |
0973-2063
|
Publisher |
|
License |
This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License. |