
open access www.bioinformation.net Hypothesis
 Volume 8(10)

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 8(10): 453-456 (2012) 453 © 2012 Biomedical Informatics

Genetic algorithm solution for double digest
problem

Mohammad Ganjtabesh1, 2*, H Ahrabian1, A Nowzari-Dalini2 & Z Razaghi Kashani
Moghadam3

1Center of Excellent in Biomathematics, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran,
Iran; 2Laboratoire d'Informatiques (LIX), Ecole Polytechnique, Palaiseau Cedex 91128, France; 3Institute of Biochemistry and
Biophysics (IBB), University of Tehran, Tehran, Iran; Mohammad Ganjtabesh – E mail: mgtabesh@ut.ac.ir; Phone: +98-21-66412178;
*Corresponding author

Received December 26, 2011; Accepted December 28, 2011; Published May 31, 2012

Abstract:
The strongly NP-Hard Double Digest Problem, for reconstructing the physical map of DNA sequence, in now using for efficient
genotyping. Most of the existing methods are inefficient in tackling large instances due to the large search space for the problem
which grows as a factorial function)!)(!(ba of the numbers a and b of the DNA fragments generated by the two restriction
enzymes. Also, none of the existing methods are able to handle the erroneous data. In this paper, we develop a novel method based
on genetic algorithm for solving this problem and it is adapted to handle the erroneous data. Our genetic algorithm is implemented
and compared with the other well-known existing algorithms. The obtained results show the efficiency (speedup) of our algorithm
with respect to the other methods, specially for erroneous data.

Background:
Usually, a DNA sequence is too long to be studied entirely and
it must be broken into a set of small fragments by performing
the digest experiment. In such experiment, restriction enzymes
are used to cut the DNA sequence at specific positions. The
length of these small fragments can be easily measured by using
the gel-electrophoresis and their corresponding sequences
become easier to determine in biological laboratory [1]. Given
the length of these fragments, the DNA restriction mapping
deals with the problem of determining the original ordering of
these fragments (digest problem). The fragment lengths
resulting from a single digest experiment can not yield any
information about the ordering of the fragments. For this
reason, double digestion experiment is performed where two
different enzymes are used as follows. First a set of clones of
DNA sequences are digested by an enzyme, say A . Then a
second set of the same clones are digested by another enzyme,
say B . Finally, the third set of the same clones are digested by
a mix of both enzymes A and B , which we refer as C
(Figure 1). The goal is to reconstruct the original ordering of the

fragments in the DNA sequences. The NP-Hardness of DDP
has been proved by Goldstein and Waterman [2]. Cieliebak has
shown that DDP is Strongly NP-Hard, even if the two enzymes
always cut at disjoint restriction sites. Moreover, he has shown
that for partial cleavage errors the problem of finding a solution
with minimum number of errors is hard to approximate [3].
Due to the basic difficulty of DDP, Sur-Kolay et. al. [4] present
a genetic algorithm to solve the errorless version of this
problem. Prior to this algorithm, several approaches including
the restriction site mapping based on separation theory [5] and
computer-assistant interactive strategies [6] have been proposed
in order to tackle this problem. In 2008, Wu and Zhang [1]
formulated this problem as a mixed-integer linear program and
by using the integer programming techniques, they can solve
randomly generated large instances of DDP. Also a molecular
solution for this problem is presented in [7]. None of the
mentioned approaches could handle the erroneous data. With
respect to the above discussion and the difficulty of DDP, it is
desirable to solve this problem by using heuristic techniques
such as Genetic Algorithms. In this paper, we present a novel

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 8(10): 453-456 (2012) 454 © 2012 Biomedical Informatics

genetic algorithm for solving DDP, and we extend it to handle
the erroneous data. Our algorithm is implemented and
compared with the other well-known existing algorithms on
two different data types, random and real data. The obtained
results show the efficiency (speedup) of our genetic algorithms
with respect to the other methods. For large input data size or
erroneous data, the efficiency of our algorithm becomes more
and more obvious.

Figure 1: An instance of Double Digest Problem.

Methodology:
DDP can be formally defined as follows [3], where)(Ssum
denotes the sum of the elements in the multiset S and)(Pdist
is the multiset of all distances between the adjacent points in the
set P of points on a line.

Definition: Given three multisets A , B , and C of positive
integers with)(=)(=)(CsumBsumAsum , find three
ordered sets AP , BP , and CP of points on a line, such that

APdist A =)(, BPdist B =)(, CPdist C =)(, and
CBA PPP =∪ (the point 0 is the smallest point in each set).

In reality, the data obtained by digest experiment may contains
different types of errors [3]. Here, we consider partial cleavage
errors, where an enzyme fails to cut at some restriction sites. In
this case, the optimization criterion for DDP is to minimize

|)(||)(| CBABAC PPPPPP −∪+∪− which is the
absolute number of partial cleavage errors in a solution. The
corresponding optimization problem, Min Absolute Error
DDP , is formally defined as follows.

Definition: Given three multisets A , B , and C of positive
integers such that)(=)(=)(CsumBsumAsum , find three
ordered sets AP , BP , and CP of points on a line, such that

APdist A =)(, BPdist B =)(, CPdist C =)(, and

|)(||)(| BACCBA PPPPPP ∪−+−∪ is minimum (the
point 0 is the smallest point in each set).

Genetic Algorithm
Genetic algorithm (GA) is a global optimization method
inspired from biological evolution. The GA searches for an
optimal solution from a population of candidate solutions
according to an objective function. Genetic operations
(selection, crossover, and mutation) are used on a given
generation to produce the solutions for next generation. These
operations are designed to preserve the most successful aspects

of solutions until the best possible one is attained. The general
scheme of our genetic algorithm is presented in (Figure 2).

Figure 2: The general scheme of our Genetic Algorithm and its
components.

Problem Encoding
To design a genetic algorithm, the solutions must be encoded in
such a way that the genetic operations could be applied on
them. To encode the solutions of DDP, we use the permutation
of the multisets A and B as chromosomes. The initial
population is randomly generated to represent the initial
solutions. Each solution contains two chromosomes, one from
the population X (corresponding to the multiset A) and the
other one from the population Y (corresponding to the
multiset B). For any chromosome),,,(=

21 niiii xxxX L

and),,,(=
21 mjjjj yyyY L in the population X and Y ,

respectively, the multiset Z is simply constructed by mapping
the elements of iX and jY on a line and computing the

distances between adjacent points. The fitness function for these
chromosomes is considered as ||=)(CZZf ∩ . Our genetic
algorithm tries to maximize the fitness function and it is
terminated when |=|)(CZf or the maximum number of
iterations is reached.

Extension for Erroneous Data
To consider the partial cleavage errors, we adopt the fitness
function of our genetic algorithm in such a way that the
solution with less error value has more opportunity to be
selected for producing the next population. This error can be
estimated by |)(||)(| CBABAC PPPPPP −∪+∪− . In
this case, our genetic algorithm is terminated when the
estimated error becomes 0 or the maximum number of
iterations is reached.

Genetic Operations
In developing of our algorithm, the Roulette-Wheel method is
chosen as a selection operation, where a chromosome with
better fitness value is selected with higher probability (for
equation see supplementry material).

Discussion:
Our algorithm is implemented in C#.Net Framework 2.0 (the
source code is available by email request to the corresponding
author). The size of the population is considered as 100 , the

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 8(10): 453-456 (2012) 455 © 2012 Biomedical Informatics

maximum iterations is set to |||| BA , 0.8=cp , 0.01=mp ,
and the higher (lower) fitness value represents the encoding of
the best solution for errorless (erroneous) instances. In what
follows, the cpu time (in second) is considered as a measure of
comparison. In order to compare the efficiency of our algorithm
with Sur-Kolay's genetic algorithm [4], different data sets have
been generated randomly. The size of the generated instances
are shown on the −x axis of (Figure 3). For each size, 10
different instances are generated and both algorithms have been
executed on them. The presented times (in second) are the
average running time over 10 different executions. As it is clear
in this figure, the efficiency of our genetic algorithm is better
than the Sur-Kolay's genetic algorithm for all instances. For
erroneous data, since none of the mentioned approaches could
handle them, we compare our algorithm with backtracking
algorithm.

Figure 3: Time comparison of the running time (in seconds) of
our genetic algorithm and Sur-Kolay's genetic algorithm for
Double Digest Problem without error.

The results of this comparison are presented in Table 1 (see
supplementry material). Again, for each size, 10 different
instances are generated randomly with different error bounds.
The times presented in this table are the average running times
of 10 different executions of these algorithms. The efficiency
(speedup) of our algorithm is obvious from this table. To
analyze the behavior of our genetic algorithm for different error
bounds, our algorithm is executed on erroneous DDP instances
with different error bounds and the results are presented in
(Figure 4). As we can see, the running time of our genetic
algorithm is almost independent from the different error
bounds. Also to show the accuracy of our genetic algorithm, we
took real data sets for DDP form [8]. The data is related to

digesting Lambda DNA sequence by using the different pairs of
enzymes (HindIII , EcoR) and (BamHI , HindIII),
which have (8, 6) and (3, 8) different fragments, respectively. By
using the both enzymes at the same time for each pair, we gain
13 and 10 different fragments, respectively. By performing our
genetic algorithm, the correct order of the fragments is
obtained.

Figure 4: Time behavior of our genetic algorithm for different
error bounds.

Conclusion:
A novel genetic algorithm is designed for solving double digest
problem. This algorithm help us to obtain the accurate result in
a reasonable amount of time for a computationally hard
problem. Specially, for erroneous data, our genetic algorithm
leads us to a satisfactory solution. The experimental results of
our algorithm confirm its efficiency.

References:
[1] Wu Z & Zhang Y, Int J Bioinform Res Appl. 2008 4: 351

[PMID: 19008180]
[2] Goldstein L & Waterman MS, Adv Appl Math. 1987 8: 194
[3] Cieliebak M et al. J Bioinform Comput Biol. 2005 3: 207

[PMID: 15852501]
[4] Sur-Kolay S et al. Int J Bioinform Res Appl. 2009 5: 570

[PMID: 19778871]
[5] Allison L & Yee CN, Comput Appl Biosci. 1988 4: 97 [PMID:

2838139]
[6] Wright LW et al. Comput Appl Biosci. 1994 10: 435 [PMID:

7804876]
[7] Ganjtabesh M et al. Comput. Inform. 2009 28: 599
[8] http://biology.clc.uc.edu/fankhauser/labs/genetics/DNA_Digesti

on/DNA_Digestion.htm.

Edited by P Kangueane
Citation: Ganjtabesh et al. Bioinformation 8(10): 453-456 (2012)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium,
for non-commercial purposes, provided the original author and source are credited

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 8(10): 453-456 (2012) 456 © 2012 Biomedical Informatics

Supplementary material:

Genetic Operations:
In developing of our algorithm, the Roulette-Wheel method is chosen as a selection operation, where a chromosome with better
fitness value is selected with higher probability.
To perform the crossover operation on

niiii xxxX ,,,(=
21
L) and

njjjj xxxX ,,,(=
21
L) from X , the following procedure

is used and two new chromosomes iO and jO are produced. Also the parameter cp (10 ≤≤ cp) is used to control the

application probability of crossover operation. The same procedure is applied on the chromosomes of the population Y .
Procedure Crossover(iX , jX , iO , jO)

for 1←k to n do
if

kjki
xx = then

kiki
xo ← ;

kikj
xo ← ;

else if 0.5≤rnd and ikj
Ox ∉ and jki

Ox ∉ then ;;
kikjkjki

xoxo ←←

else if iki
Ox ∉ and jkj

Ox ∉ then ;;
kjkjkiki

xoxo ←←

end if.
end for.
if some positions in iO (jO) are left blank then

randomly fill them with the elements in ii OX \ (jj OX \);

end if.
end.
To escape converging to a local optima and also to regenerate the lost chromosomes, the mutation operation should be considered.
This operation is performed with probability mp on a single chromosome in two different ways as follows:
The sub-array which is chosen randomly is reversed in place.
The chosen sub-array is circularly shifted to left or right by one position.

Table 1: The comparison of the running time (in seconds) of backtracking algorithm and our genetic algorithm for erroneous
randomly generated instances of different sizes.

 Size of instance |)||,||,(| CBA Average running time for
backtracking algorithm

 Average running time for our genetic algorithm

 (10,11,18) 775.9 10.8
(10,12,19) 1124.2 10.5
(15,18,28) 6495 11.2
(20,21,35) 18770.3 11.0
(23,25,46) 24128 11.2
(24,29,51) ∞ 11.6
(31,36,64) ∞ 12.8
(36,43,75) ∞ 16.4
(45,38,79) ∞ 17.2
(51,39,87) ∞ 20.4

