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Abstract: 
The strongly NP-Hard Double Digest Problem, for reconstructing the physical map of DNA sequence, in now using for efficient 
genotyping. Most of the existing methods are inefficient in tackling large instances due to the large search space for the problem 
which grows as a factorial function )!)(!( ba  of the numbers a  and b  of the DNA fragments generated by the two restriction 
enzymes. Also, none of the existing methods are able to handle the erroneous data. In this paper, we develop a novel method based 
on genetic algorithm for solving this problem and it is adapted to handle the erroneous data. Our genetic algorithm is implemented 
and compared with the other well-known existing algorithms. The obtained results show the efficiency (speedup) of our algorithm 
with respect to the other methods, specially for erroneous data.   
 
 

 
Background: 
Usually, a DNA sequence is too long to be studied entirely and 
it must be broken into a set of small fragments by performing 
the digest experiment. In such experiment, restriction enzymes 
are used to cut the DNA sequence at specific positions. The 
length of these small fragments can be easily measured by using 
the gel-electrophoresis and their corresponding sequences 
become easier to determine in biological laboratory [1]. Given 
the length of these fragments, the DNA restriction mapping 
deals with the problem of determining the original ordering of 
these fragments (digest problem). The fragment lengths 
resulting from a single digest experiment can not yield any 
information about the ordering of the fragments. For this 
reason, double digestion experiment is performed where two 
different enzymes are used as follows. First a set of clones of 
DNA sequences are digested by an enzyme, say A . Then a 
second set of the same clones are digested by another enzyme, 
say B . Finally, the third set of the same clones are digested by 
a mix of both enzymes A  and B , which we refer as C  
(Figure 1). The goal is to reconstruct the original ordering of the 

fragments in the DNA sequences. The NP-Hardness of DDP  
has been proved by Goldstein and Waterman [2]. Cieliebak has 
shown that DDP is Strongly NP-Hard, even if the two enzymes 
always cut at disjoint restriction sites. Moreover, he has shown 
that for partial cleavage errors the problem of finding a solution 
with minimum number of errors is hard to approximate [3]. 
Due to the basic difficulty of DDP, Sur-Kolay et. al. [4] present 
a genetic algorithm to solve the errorless version of this 
problem. Prior to this algorithm, several approaches including 
the restriction site mapping based on separation theory [5] and 
computer-assistant interactive strategies [6] have been proposed 
in order to tackle this problem. In 2008, Wu and Zhang [1] 
formulated this problem as a mixed-integer linear program and 
by using the integer programming techniques, they can solve 
randomly generated large instances of DDP. Also a molecular 
solution for this problem is presented in [7]. None of the 
mentioned approaches could handle the erroneous data. With 
respect to the above discussion and the difficulty of DDP, it is 
desirable to solve this problem by using heuristic techniques 
such as Genetic Algorithms. In this paper, we present a novel 
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genetic algorithm for solving DDP, and we extend it to handle 
the erroneous data. Our algorithm is implemented and 
compared with the other well-known existing algorithms on 
two different data types, random and real data. The obtained 
results show the efficiency (speedup) of our genetic algorithms 
with respect to the other methods. For large input data size or 
erroneous data, the efficiency of our algorithm becomes more 
and more obvious.  
 

 
Figure  1: An instance of Double Digest Problem. 
 
Methodology: 
DDP can be formally defined as follows [3], where )( Ssum  
denotes the sum of the elements in the multiset S and )( Pdist  
is the multiset of all distances between the adjacent points in the 
set P  of points on a line. 
 
Definition: Given three multisets A , B , and C  of positive 
integers with )(=)(=)( CsumBsumAsum , find three 
ordered sets AP , BP , and CP  of points on a line, such that 

APdist A =)( , BPdist B =)( , CPdist C =)( , and 
CBA PPP =∪  (the point 0  is the smallest point in each set). 

In reality, the data obtained by digest experiment may contains 
different types of errors [3]. Here, we consider partial cleavage 
errors, where an enzyme fails to cut at some restriction sites. In 
this case, the optimization criterion for DDP  is to minimize 

|)(||)(| CBABAC PPPPPP −∪+∪−  which is the 
absolute number of partial cleavage errors in a solution. The 
corresponding optimization problem, Min Absolute Error 
DDP , is formally defined as follows. 
 
Definition: Given three multisets A , B , and C  of positive 
integers such that )(=)(=)( CsumBsumAsum , find three 
ordered sets AP , BP , and CP  of points on a line, such that 

APdist A =)( , BPdist B =)( , CPdist C =)( , and 

|)(||)(| BACCBA PPPPPP ∪−+−∪  is minimum (the 
point 0  is the smallest point in each set). 
 
Genetic Algorithm 
Genetic algorithm (GA) is a global optimization method 
inspired from biological evolution. The GA searches for an 
optimal solution from a population of candidate solutions 
according to an objective function. Genetic operations 
(selection, crossover, and mutation) are used on a given 
generation to produce the solutions for next generation. These 
operations are designed to preserve the most successful aspects 

of solutions until the best possible one is attained. The general 
scheme of our genetic algorithm is presented in (Figure 2).  

 
Figure 2: The general scheme of our Genetic Algorithm and its 
components. 
 
Problem Encoding 
To design a genetic algorithm, the solutions must be encoded in 
such a way that the genetic operations could be applied on 
them. To encode the solutions of DDP, we use the permutation 
of the multisets A and B as chromosomes. The initial 
population is randomly generated to represent the initial 
solutions. Each solution contains two chromosomes, one from 
the population X  (corresponding to the multiset A ) and the 
other one from the population Y  (corresponding to the 
multiset B ). For any chromosome ),,,(=

21 niiii xxxX L  

and ),,,(=
21 mjjjj yyyY L  in the population X  and Y , 

respectively, the multiset Z  is simply constructed by mapping 
the elements of iX  and jY  on a line and computing the 

distances between adjacent points. The fitness function for these 
chromosomes is considered as ||=)( CZZf ∩ . Our genetic 
algorithm tries to maximize the fitness function and it is 
terminated when |=|)( CZf  or the maximum number of 
iterations is reached.  
 
Extension for Erroneous Data 
To consider the partial cleavage errors, we adopt the fitness 
function of our genetic algorithm in such a way that the 
solution with less error value has more opportunity to be 
selected for producing the next population. This error can be 
estimated by |)(||)(| CBABAC PPPPPP −∪+∪− . In 
this case, our genetic algorithm is terminated when the 
estimated error becomes 0  or the maximum number of 
iterations is reached.  
 
Genetic Operations 
In developing of our algorithm, the Roulette-Wheel method is 
chosen as a selection operation, where a chromosome with 
better fitness value is selected with higher probability (for 
equation see supplementry material). 
 
Discussion: 
Our algorithm is implemented in C#.Net Framework 2.0 (the 
source code is available by email request to the corresponding 
author). The size of the population is considered as 100 , the 



BIOINFORMATION open access 
 

ISSN 0973-2063 (online) 0973-8894 (print)   
Bioinformation 8(10): 453-456 (2012) 455  © 2012 Biomedical Informatics
 

maximum iterations is set to |||| BA , 0.8=cp , 0.01=mp , 
and the higher (lower) fitness value represents the encoding of 
the best solution for errorless (erroneous) instances. In what 
follows, the cpu time (in second) is considered as a measure of 
comparison. In order to compare the efficiency of our algorithm 
with Sur-Kolay's genetic algorithm [4], different data sets have 
been generated randomly. The size of the generated instances 
are shown on the −x axis of (Figure 3). For each size, 10 
different instances are generated and both algorithms have been 
executed on them. The presented times (in second) are the 
average running time over 10 different executions. As it is clear 
in this figure, the efficiency of our genetic algorithm is better 
than the Sur-Kolay's genetic algorithm for all instances. For 
erroneous data, since none of the mentioned approaches could 
handle them, we compare our algorithm with backtracking 
algorithm.  
 

 
Figure 3: Time comparison of the running time (in seconds) of 
our genetic algorithm and Sur-Kolay's genetic algorithm for 
Double Digest Problem without error. 
 
The results of this comparison are presented in Table 1 (see 
supplementry material). Again, for each size, 10 different 
instances are generated randomly with different error bounds. 
The times presented in this table are the average running times 
of 10 different executions of these algorithms. The efficiency 
(speedup) of our algorithm is obvious from this table. To 
analyze the behavior of our genetic algorithm for different error 
bounds, our algorithm is executed on erroneous DDP instances 
with different error bounds and the results are presented in 
(Figure 4). As we can see, the running time of our genetic 
algorithm is almost independent from the different error 
bounds. Also to show the accuracy of our genetic algorithm, we 
took real data sets for DDP  form [8]. The data is related to 

digesting Lambda DNA sequence by using the different pairs of 
enzymes ( HindIII , EcoR ) and ( BamHI , HindIII ), 
which have (8, 6) and (3, 8) different fragments, respectively. By 
using the both enzymes at the same time for each pair, we gain  
13 and 10 different fragments, respectively. By performing our 
genetic algorithm, the correct order of the fragments is 
obtained. 
 

 
Figure 4: Time behavior of our genetic algorithm for different 
error bounds. 
 
Conclusion: 
A novel genetic algorithm is designed for solving double digest 
problem. This algorithm help us to obtain the accurate result in 
a reasonable amount of time for a computationally hard 
problem. Specially, for erroneous data, our genetic algorithm 
leads us to a satisfactory solution. The experimental results of 
our algorithm confirm its efficiency. 
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Supplementary material: 
 
Genetic Operations: 
In developing of our algorithm, the Roulette-Wheel method is chosen as a selection operation, where a chromosome with better 
fitness value is selected with higher probability.  
To perform the crossover operation on 

niiii xxxX ,,,(=
21
L ) and 

njjjj xxxX ,,,(=
21
L ) from X , the following procedure 

is used and two new chromosomes iO  and jO  are produced. Also the parameter cp  ( 10 ≤≤ cp ) is used to control the 

application probability of crossover operation. The same procedure is applied on the chromosomes of the population Y . 
Procedure Crossover( iX , jX , iO , jO ) 

for 1←k   to n   do 
if 

kjki
xx =   then 

kiki
xo ← ; 

kikj
xo ← ; 

else if 0.5≤rnd  and ikj
Ox ∉  and jki

Ox ∉   then ;;
kikjkjki

xoxo ←←  

else if iki
Ox ∉  and jkj

Ox ∉   then ;;
kjkjkiki

xoxo ←←  

end if. 
end for. 
if some positions in iO  ( jO ) are left blank  then 

randomly fill them with the elements in ii OX \  ( jj OX \ ); 

end if. 
end. 
To escape converging to a local optima and also to regenerate the lost chromosomes, the mutation operation should be considered. 
This operation is performed with probability mp  on a single chromosome in two different ways as follows:   
The sub-array which is chosen randomly is reversed in place.  
The chosen sub-array is circularly shifted to left or right by one position. 
 
Table 1: The comparison of the running time (in seconds) of backtracking algorithm and our genetic algorithm for erroneous 
randomly generated instances of different sizes. 

  Size of instance |)||,||,(| CBA   Average running time for 
backtracking algorithm 

 Average running time for our genetic algorithm 

 (10,11,18)   775.9   10.8  
(10,12,19)   1124.2   10.5  
(15,18,28)   6495   11.2  
(20,21,35)   18770.3   11.0  
(23,25,46)   24128   11.2  
(24,29,51)   ∞    11.6  
(31,36,64)   ∞    12.8  
(36,43,75)   ∞    16.4  
(45,38,79)   ∞    17.2  
(51,39,87)   ∞    20.4  
 


