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Abstract: 
We start by constructing gene-gene association networks based on about 300 genes whose expression values vary between the groups of CFS patients (plus 
control). Connected components (modules) from these networks are further inspected for their predictive ability for symptom severity, genotypes of two single 
nucleotide polymorphisms (SNP) known to be associated with symptom severity, and intensity of the ten most discriminative protein features. We use two 
different network construction methods and choose the common genes identified in both for added validation. Our analysis identified eleven genes which may play 
important roles in certain aspects of CFS or related symptoms. In particular, the gene WASF3 (aka WAVE3) possibly regulates brain cytokines involved in the 
mechanism of fatigue through the p38 MAPK regulatory pathway. 
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Background: 
Chronic Fatigue Syndrome (CFS) is a relatively rare, poorly understood, 
complex disorder that is characterized by severe and chronic physical and 
mental fatigue not attributable to other causes (diseases) which is sometimes 
accompanied by other symptoms such as weak immune response, digestive 
problems and depression. A great deal of effort has been put forth in recent 
years in collecting clinical, gene expression, gynotypic and proteomic data by 
the Chronic Fatigue Syndrome Group at CDC in an  attempt to find a genetic 
basis of CFS. Even though these data have been analyzed by numerous 
researchers (and research teams) in the last two years resulting in a special 
issue of the journal Pharmacogenomics [1] and were also as part the Critical 
Assessment of Microarray Data Analysis (CAMDA) conference in 2006, the 
type of success has been mixed and limited. Since genes do not act alone, 
especially, for a complex disorder such as CFS, our attempt in analyzing these 
data takes a systems biology approach where we study groups of genes (called 
modules) obtained from gene-gene association networks. Thus, our approach is 
similar to that of [2], although our network construction methods and the 
statistical analyses are different from theirs. At the end, we identify eleven 
"interesting" genes which may play important roles in certain aspects of CFS or 
related symptoms. In particular, the gene WASF3 (aka WAVE3) possibly 
regulates brain cytokines involved in the mechanism of fatigue through the p38 
MAPK regulatory pathway. A preliminary version of this work was presented 
in the CAMDA 2007 conference [3].  
 

Methodology: 
The CDC Chronic Fatigue Syndrome Research Group provided challenge 
datasets consisting of clinical, microarray, proteomics, and SNP data that were 
used for both CAMDA 2006 and CAMDA 2007 competitions. 227 subjects 
filled self-administered questionnaires and had their blood drawn for lab 
analysis. For many of them, microarray (163) and proteomics (63) data were 
also collected for the purpose of discovering biological (genetic) basis of CFS. 
In this work, we integrate clinical, microarray, SNP and proteomics data for 
our analysis. 
 
Microarray data: 
CAMDA 2006 microarray data consists of 177 arrays, 9 of which were 
repeated twice at different times during the study. We discarded these 9 
microarrays for multiplicity reasons and additional 5 arrays were excluded 
from this analysis due to the absence of clinical information on the subjects. 
Thus, we started our analysis with 163 arrays. Subtracted ARM (Artifact-
removed) density column which is already adjusted for the background density 
was log-transformed to stabilize the variance. 
 
Clinical data: 
Clinical data contains extensive information on 227 subjects and can be linked 
to microarray and SNP data via the ABTID subject ID. The two pieces of 
clinical data that we made use of were the Intake Classific variable classifies 
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patients into 5 categories and the Cluster variable provides information on the 
severity of the symptoms (“Worst”, “Middle”, “Least”) for some patients. 
 
SNP data: 
Forty two Single nucleotide polymorphisms (SNP's) for 10 different genes 
were genotyped. For the purposes of this analysis, we selected two SNP's, 
hCV245410 (on gene TPH2) and hCV7911132 (on gene SLC6A4), which were 
previously identified [2] to be associated with CFS severity. 
 
Proteomic data: 
Protein spectra are available for 63 subjects in the study. Serum was originally 
separated into 6 fractions of which we use the last four and then applied to 
three different SELDI surfaces, giving us a total combination of 12 different 
settings. Experiments were repeated twice and we averaged the two spectra for 
each subject. We removed the first 4000 m/z values from our analysis which 
roughly corresponds to m/z values smaller than 1700 Da. After that we divided 
the spectrum into the bins of size 10 and took the maximum intensity value in 
each bin. The data was reduced by a factor of 10, leaving 2650 m/z values in 
the data for further analysis. To de-noised data, we estimated the standard 
deviation for each m/z bin and took the median of these as a measure of noise' 
standard deviation σ. Intensity values smaller than 3σ were considered to be 
pure noise. If this happened in all samples, the m/z value was removed from the 
analysis. Then the data was then log transformed. 
 
Statistical analysis: 
The first step of the statistical analysis we performed was to identify a set of 
differentially expressed genes between different groups of subjects. Disease 
status of subjects came from the clinical portion of the CFS data (Intake 
Classific variable). All subjects included in the microarray study were 
classified into 5 different groups: Ever CFS - 45 subjects ever experiencing 
CFS, Non-fatigues - 34 controls who never experienced CFS, Ever ISF - 45 
subjects who are fatigued but cannot be classified as CFS because of 
insufficient symptoms, Ever ISF-MDDm - 20 subjects experiencing ISF with 
melancholic depression, Ever CFS-MDDm - 19 subjects experiencing CFS 
along with melancholic depression. ANOVA F-test for each probe was carried 
out to determine differentially expressed genes across the five groups. 286 
probes were identified as differentially expressed (p-values < 0.01). Since we 
are not interested in determining the differentially expressed genes per se, 
multiplicity correction was not used. The reduced microarray data consisting of 
286 probes and 163 samples (subjects) was used later for further statistical 
analysis as discussed below. 
 

 
Figure 1: Gene-Gene Association Network constructed using the PLS method 
 
Network construction and identification of associated gene sets: 
To better understand the relationships between the selected 286 probes in terms 
of interactions/ associations, we employ two computational network inference 
techniques. The first method is based on the Partial Least Squares regression 
(PLS) [4], while the second method is based on the Partial Correlations (PC) 
[5]. A number of similar characteristics are shared by the two approaches, such 
as computing association scores whose magnitude reflects the strength of the 
interaction between genes and local false discovery rate (local fdr) Empirical 
Bayes procedure for multiplicity adjustment in testing multiple hypotheses. The 

results from applying the PLS and PC network reconstruction techniques to the 
reduced microarray data are summarized in the first three columns of Tables 1 
(for PLS) and 2 (for PC). The actual visual representation of the networks 
themselves can be found from Figures 1 & 2, respectively. Both Tables 1 and 
2 have the same structure. The first column shows the number of genes in 
distinct gene association modules (connected components) within each net-
work. Gene association modules were defined to be clusters of 4 or more 
connected genes such that genes in two distinct components are not connected 
by an edge. Thus, it differs from the definition used in [2]. The tables are sorted 
by the second column which displays the percentages of each module's average 
association score when compared to the module with the largest average 
association score (the first module in each table). The exact definition of 
association scores are dependent on the method used. As for example, for the 
PC method, the association score of an edge is the partial correlation between 
the connected gene pair. Finally, in the third column we list all the genes 
belonging to each individual module. Genes shown in red are the genes that 
appear in both tables. 
 

 
Figure 2: Gene-Gene Association Network constructed using the PC method 
 
Prediction of symptom severity: 
After identifying clusters of associated/interacting genes, we investigate the 
ability of each module to predict the CFS severity level. For that purpose, we 
fit a log-linear model for each gene module to regress the clinical variable 
Cluster on the set of expression profiles of genes included in the module. The 
overall predictive ability of the CFS severity by a given module can be judged 
on the basis of the likelihood ratio test which compares the full model (all 
genes in a module included as covariates in the model) and the null model 
which includes no covariates. The p-values obtained from the tests are shown 
in the fourth column of Tables 1 and 2 (see Supplementary material). Small 
p-values indicate that gene association modules are effective in predicting the 
symptom severity categories. 
 
SNP association:  
Carrying out a similar analysis as in the previous section, we study how 
effectively each gene cluster (module) can predict the genotypes of the two 
SNP's, hCV245410 and hCV7911132, which have been identified by [2] to be 
associated with symptom severity. Again, we fit multiple log-linear models and 
compute the p-values for the likelihood ratio tests. The p-values for both SNP's 
are shown in columns 5 and 6. 
 
Integration of proteomic data: 
We have run a number of well regarded classifiers (Random Forest, LDA, and 
others) based on the class information with the hope of identifying the features 
possessing the greatest classification ability; however this approach was 
abandoned since none of the classifiers produced desirable classification error 
rates when cross validation was used. An alternative analysis consisted of 
performing a t-test for each m/z value to compare case and control samples 
which identified the discriminating features by the magnitude of the p-values. 
Then we fitted regression models to predict the intensity values of the ten most 
discriminating features from the collection of expressions of the genes in the 
two modules (from PLS and PC, respectively) identified by our analysis of 
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associated gene sets. The genes have a good predictive ability as can be seen 
from Table 3 (see Supplementary material) 
 
Discussion:  
Two gene association modules (indicated by asterisks) are of interest based on 
their predictive ability of symptom severity, at least, one of the SNP genotypes 
and intensity of identified proteomic features. The first cluster comes from the 
PLS reconstructed network and the other one from the PC reconstructed 
network. Table 4 (see Supplementary material) lists the eleven genes that are 
in common between these two gene modules. The GO annotations listed in the 
table were mined from the BioGrid online repository [6] and the pathway 
analysis was conducted using the DAVID webtools [7] in addition to mining 
existing literature. It is plausible that these genes are responsible for certain 
aspects of CFS or its symptoms. As for example, the first gene on the list 
WASF3 (aka WAVE3) is thought to take part in the p38 MAPK regulatory 
pathway [8]. On the other hand, in recent animal model studies [9], it has been 
demonstrated that regulation of brain cytokines through p38 MAPK pathway is 
involved in the in the central mechanisms of fatigue and therefore may play a 
role in the pathogenesis of the CFS. The list also includes autoimmune 
response gene NUP98 and genes related to tumor activities (PRUNE, TNK2, 
HOXA1). Gene expression of HDAC7A has been shown to be correlated with 
unexplained fatigue in a past study [10]. The gene GPR41's role in autoimmune 
disorders including CFS has been hypothesized in [11]. 
 
Conclusion: 
It is possible and perhaps desirable to integrate information from various 
experimental platforms in order to understand complex disorders. The findings 

in this study are based on data mining approaches using clinical, gene 
expression, SNP and proteomic data. The predictive models obtained here may 
explain certain aspects of CFS and may pave the way for further experimental 
validation. 
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Supplementary material: 
 
Table 1: Gene association modules discovered by the PLS based network inference method. For each such module (in rows) we are listing the number of genes, 
relative association strength, gene names, and p-values for the three log-linear models as discussed in the text. Genes in red have also been included into modules 
by the PC method as well. 

# of 
Genes 

Average Scores 
(%) 

Gene Symbols Severity p-value hCV245410 hCV7911132 

4 100 MTA1, SRP68, XM_049568, CLDN10 0.7588 0.3869 0.0328 
9 88 CREB5, MED6, UPP1, NP_775847.1, 

ABCG8, RNF25, XM_089436, THSD1, 
NM _022084 

0.1645 0.2970 0.1271 

5 85 HOXA1,  NAGA, GAK, CK021 HUMAN, 
CDH23 

0.4978 0.2636 0.6640 

6 81 IER2, TCIRG1, XM67745,  XM_065828, 
XM70678,  HDAC7A 

0.5051 0.5825 0.1689 

*5 79 WASF3, NUP98, PRUNE, NP_079431.1, 
KIRREL3 

0.0154 0.0163 0.1665 

6 78 ZFYVE19, AK024757, CNGB1, WARS2, 
SPIN2, XM_069044 

0.0081 0.7775 0.1203 

5 77 PCDH21, ASS, GTF2I, ARID4B, TN_FSF13B  0.3015 0.4987 0.0112 
9 77 AB082528, HNRPLL, HBLD2, ZNF165, 

MOG, SORL1, VAT1, EPC2, NP_787114.1 
0.0063 0.8304 0.1047 

4 77 MTMR8, NP_076414.2, MLL3, XM_087606 0.0032 0.5670 0.2732 
4 76 ZFYVE9, RAD51C, XM 085181, ZBTB11 0.2778 0.4110 0.0009 
4 75 TNK2, EIF3S8, PMS2L5, TCP11 0.1286 0.6770 0.1270 
4 73 MAP3K2, ATF5, AF107495, GALK2 0.0436 0.2459 0.1904 
15 72 CDC2L5, PLP2, NR1H2, PLAUR, SPATA11, NP_060367.1, KCNQ5, 

COL9A1, AF173157, XM_067644, MAB21L1, CNR2, NP_054868.2, 
RAB32, ADAM9 

0.0145 0.0960 0.2859 

4 18 SLC1A4, F13A1, RGSL2, GUSB 0.0053 0.7451 0.4517 

 
Table 2: Gene association modules discovered by the PC based network inference method 

# of 
Genes 

Average Scores 
(%) 

Gene Symbols Severity p-
value 

hCV24541
0 

hCV791113
2 

4 100 SRP68, MTA1, XM_049568, CLDN10 0.7588 0.3869 0.0328 
5 85 ABCG8, NP_775847.1, UPP1, NM_022084, THSD1 0.0329 0.2552 0.1428 

9 85 CASP3, XM72572, TMEM5, XM14557, CANT1, XM 033654,  FOXF1, 
VCPIP1, PRUNE 

0.1299 0.5498 0.2732 

*24 84 CHST3, SIP1, TNK2, CLIC2, AK097480, NP 065988.1, XM_065828, 
EIF3S8, HES1, HOXA1, PMS2L5, KCNH2, XM66160, TNFRSF14, 
EFEMP1, KCNQ2, WASF3, Q8N8I1 HUMAN, MYPN, HDAC7A, WDR32, 
NP 620310.1, GPR41, MAP3K2 

0.0169 0.0586 0.6642 

6 84 NP_060367.1, SPATA11, XM_058846, CDC2L5, RAB32, NP_054868.2 0.0315 0.3867 0.1895 

6 83 NAGA, CDH23, GAK, NP 061934.2, CK021_HUMAN, ZFYVE9 0.1886 0.8259 0.0800 

14 82 CHST4, CDR2, NP_114416.1, NP_056318.1, IKBKAP, KIRREL3, FAS, 
ZNF77, B3GALT3, MST1R, XM71032, PNLIPRP1, OPRD1, MRPL50 

0.0001 0.9611 0.4225 

4 81 VIPR1, CFLAR, SPTA1, ZNF7 0.0105 0.5447 0.7448 
8 79 CNGB1, KRT20, TCIRG1, PGLYRP3, PRSS12, SMPX, XM_085181, 

XM70678 
0.0932 0.6724 0.4883 

4 78 CHD3, AK075566, XM14294, NP_062550.2 0.0536 0.8380 0.9018 

 
Table 3: P-values for regression models (regressing the PLS and the PC modules marked with an asterisk in Tables 2 and 3 on the intensity of the top-10 most 
discriminative features in the protein spectra corresponding to the plate IMAC30, fraction 4, and High laser for the PLS module and H50, fraction 6, and Low laser 
for the PC module. 

Modules 1  2 3 4 5 6 7 8 9 10 

PLS Module 0.9358 0.0409 0.3409 0.1622 0.4425 0.0334 0.1191 0.0961 0.0640 0.0139 
PC Module 0.0717 0.0406 0.3171 0.1058 0.5441 0.0272 0.0718 0.0577 0.0777 0.0947 
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Table 4: Common genes from the two PLS and PC clusters identified as predictive of disease severity status and SNP hCV245410 genotype. GO annotations and 
pathways were available from existing literature. 
Gene GO Process  Pathways Description 

WASF3 Cell Organization and Biogenesis,  
Metabolism 

Adherens Junction Actin-binding WH2 

NUP98 Cell Organization and Biogenesis, 
Transport, DNA Replication 

RAN regulation Nucleoporin 98kDa, protein coding 

PRUNE Energy production and conversion  Purine metabolism Glycoside hydrolase, Phosphoesterase 
KIRREL  Signal Transduction, Cell Adhesion 

 
 Integral to membrane, protein binding 

TNK2  Cell Organization and Biogenesis, Signal 
Transduction, Protein amino acid 
phosphorylation 

Regulation of CDC42 
activity, Regulation of 
RAC1 activity 

PAK-box/P21-Rho-binding, Protein 
kinase 

EIF3S8  Protein Biosynthesis  Translation initiation factor activity 
HOXA1  Transcription p44/42 MAP kinase Sequence-specific DNA binding 
PMS2L5  
 

DNA Repair  ATP binding, damaged DNA binding 

HDAC7A  DNA Metabolism, Transcription  Histone deacetylase 7A 
GPR41  Signal Transduction p53/Bax pathway G Protein-Coupled Receptor 
MAP3K2  Protein amino acid phosphorylation Mapk signaling, Gap 

Junction 
Mitogen-activated protein kinase 

 
 


