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Abstract:  
The expressions of proteins in the cell are carefully regulated by transcription factors that interact with their downstream targets in 
specific signal transduction cascades. Our understanding of the regulation of functional genes responsive to stress signals is still 
nascent. Plants like Arabidopsis thaliana, are convenient model systems to study fundamental questions related to regulation of the 
stress transcriptome in response to stress challenges. Microarray results of the Arabidopsis transcriptome indicate that several genes 
could be upregulated during multiple stresses, such as cold, salinity, drought etc. Experimental biochemical validations have proved 
the involvement of several transcription factors could be involved in the upregulation of these stress responsive genes. In order to 
follow the intricate and complicated networks of transcription factors and genes that respond to stress situations in plants, we have 
developed a computer algorithm that can identify key transcription factor binding sites upstream of a gene of interest. Hidden 
Markov models of the transcription factor binding sites enable the identification of predicted sites upstream of plant stress genes. 
The search algorithm, STIF, performs very well, with more than 90% sensitivity, when tested on experimentally validated positions 
of transcription factor binding sites on a dataset of 60 stress upregulated genes.  
 
Availability: Supplementary data is available at http://caps.ncbs.res.in/download/stif 
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Background:  
The interactions between regulatory proteins and DNA 
control many important processes and responses to 
environmental stresses, and defects in these interactions can 
contribute to inefficient stress responses. Plants, like 
Arabidopsis thaliana, are very simple and good model 
systems to understand fundamental processes such as protein-
DNA interactions that happen in response to environmental 
stresses [1, 2]. Numerous studies have shown that 
transcription factors are important in regulating plant 
responses to stress. One important step in the control of stress 
responses is the transcriptional activation or repression of 
genes. Databases, such as ATHAMAP [3], offer information 
about the chromosomal positions of genes of interest and 
possible location of their transcription factors and binding 
sites. Multiple signalling pathways regulate the stress 
responses of plants and there is significant overlap between 
the patterns of gene expression that are induced in plants in 
response to different stresses [4]. Many genes induced by 
stress challenges, including those encoding transcription 
factors, have been identified and some of them have been 
shown to be essential for stress tolerance. Many studies have 
also revealed some of the complexity and overlap in the 

responses to different stresses, and are likely to lead to new 
ways to enhance crop tolerance to disease and environmental 
stress. The binding specificities of only a small number of 
transcription factors (TFs) are well characterized. 
Transcription-factor binding sites (TFBSs) are usually short 
(around 5-15 base-pairs (bp)) and they frequently contain 
degenerate sequence motifs. The sequence degeneracy of 
TFBSs has been selected through evolution and is beneficial, 
because it confers different levels of activity upon different 
promoters. Much of the information on TF binding specificity 
has been determined using traditional methodologies, such as 
foot-printing methods, (that identify the region of DNA 
protected by a bound protein), nitrocellulose binding assays, 
gel-shift analysis (that monitors the change in mobility when 
DNA and protein bind), South-western blotting (of both DNA 
and protein) or reporter constructs. These methods are 
generally quite time-consuming and are not readily scalable to 
a whole genome [5]. One of the interesting problems is to 
identify the cis-acting elements by computational techniques 
at a whole genome level so as to choose promising targets for 
detailed experimental investigation. Well-known eukaryotic 
transcription factors and their binding sites are recorded in 
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TRANSFAC database [6]. There are computational tools to 
facilitate the retrieval of information from TRANSFAC 
database, but for the human genome [7]. There have also been 
algorithms that employ position-specific profiles and scoring 
schemes to recognize putative TFBS [8, 9] or probabilistic 
models [10]. These servers and algorithms are largely for 
eukaryotic general-purpose transcription factors and not 
specific for plant stress induced genes. There are other 
computational algorithms to search for possible genes that are 
downstream of classical TFBS, where the binding site data are 
encoded as HMMs and searched all around the genome of 
interest. These methods are called as ‘targeted gene finding’ 
since they begin from known TFBS [11]. However, this 
approach is complicated for plant stress genes since stress TF-
binding site signatures could potentially be upstream of 
constitutive genes as well and there could also be overlap in 
various TFBS. We have collected data of well-known stress 
specific transcription factors and generated Hidden Markov 
Method (HMM) of known TFBS. This knowledge-based 
approach, by building HMM models through well-known 
abiotic stress cis-elements, has been tested extensively to 
standardize thresholds for scores. 
 
Methodology:  
In Arabidopsis thaliana, we have examined 10 families of 
transcription factors known to be involved in responses to 
abiotic stress (Table 1 under supplementary material).  
 
Dataset for validation 
We have identified 60 stress responsive genes from six 
different microarray databases and these were collected on the 
basis of their consistent upregulation in response to abiotic 
stress signals in most of these microarray databases and 
across different microarray experiments. To compare the cis-
elements both in stress on-off conditions, we also identified 
60 constitutive genes from six different databases. Genes that 
get consistently upregulated under abiotic conditions were 
identified from these databases and used for the validation 
study.  
 
RARGE 
RARGE [12] presents Arabidopsis resource data (cDNAs, 
transposon mutants and microarray experiments) for all 
biology researchers. RARGE has data from 6 different abiotic 
stress experiments (i.e. cold, drought, salt, ABA, Light, 
dehydration stress) with expression levels at different time 
courses.  
 
DRASTIC 
DRASTIC [13] is a database of plant genes regulated in 
response to biotic and abiotic stress, developed and 
maintained by the Scottish Crop Research Institute.  

StressLink 
StressLink[14] is a database linking genome information to 
the primary literature on stress-related genes in Arabidopsis 
thaliana.  
 
AtGenExpress 
AtGenExpress [15] is a multinational effort designed to 
uncover the transcriptome of the multicellular model 
organism Arabidopsis thaliana [15].  
 
DATF 
The Database of Arabidopsis Transcription Factors (DATF) 
[16] collects all Arabidopsis transcription factors and 
classifies them into 64 families. It uses not only locus (gene), 
but also gene model (transcript, protein) and the detail 
information is for each gene model not for locus. It adds 
multiple alignment of the DNA- binding domain of each 
family. 
 
TAIR 
The Arabidopsis Information Resource (TAIR) [17] maintains 
a database of genetic and molecular biology data for the 
model higher plant Arabidopsis thaliana. Data available from 
TAIR includes the complete genome sequence along with 
gene structure, gene product information, metabolism, gene 
expression, DNA and seed stocks, genome maps, genetic and 
physical markers, publications, and information about the 
Arabidopsis research community.  
                
Construction of a Hidden Markov Model 
Hidden Markov Model (HMM) is a probabilistic method, 
which is used for TFBS detection. The consensus (S) of 
length (L) was taken from the literature and the probabilistic 
score (P(S)) and log-odd score were calculated by using 
equation (1) and (2) (see supplementary material) 
respectively. 
 
As plant sequences are rich in GC content, we gave higher 
weight to AT than GC in log-odd score (please see Figure 1 
for an example). 
 
STIF - TFBS search algorithm 
The search program will accept nucleotide stretch that is 
upstream of an abiotic stress gene. A detailed flow-chart of 
the search algorithm is given in Figure 2. The TFBS search 
algorithm searches for cis-elements both in forward and 
reverse direction in the query sequence from the built models 
and the acquired hit gets a HMM score. The chromosomal 
position, UTR position, cis-element, orientation of the cis-
element are also recorded and mentioned in the output.  
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Figure 1: Construction of a Hidden Markov Model of transcription factor binding sites given the experimentally observed 
nucleotide patterns. 
 

  
Figure 2: Flow chart diagram of STIF search algorithm. 
 
Validation 
Validation was performed using a leave-one-out approach 
(Jackknifing method). The threshold and maximum scores of 
each HMM model was further decided by this statistical test 
of jackknifing (Figure 1). The parameters (coverage, 
sensitivity and specificity) chosen for the statistical tests were 
calculated using the equations (3), (4) and (5) given under 
supplementary material. 
 

Implementation 
We have used Perl based programs exclusively developed for 
STIF algorithm to perform HMM related computation, 
searching, calculation of statistics and input - output parsing. 
Scripts for parsing, searching, statistics and other calculations 
like Z-Score and normalization are coded for the STIF 
algorithm in Perl as in equation (6) and (7) respectively 
(under supplementary material). The source code is available 
from the corresponding author upon request. 
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Discussion:  
A computational method, STIF, has been developed to search 
for potential transcription factor binding sites of stress-
specific transcription factors, starting from Hidden Markov 
Models of nucleotide binding site patterns of cis-elements that 
are well-known to respond during stress situations in plants. 
The 19 models of cis-elements, based on abiotic stress 
transcription factor families, were built as Hidden Markov 
Models and were validated using Jackknifing method. We had 
applied our HMM-based search algorithm, STIF, to search 
100 base pairs upstream of the gene with its 5′UTR. We 
identified 60 abiotic stress genes from well-known microarray 
databases based on the high stress-induced expression 
profiles. These genes were known to be upregulated during 
stress and their validated TFBS information is also clearly 
available. To evaluate the method further, we also searched 
against 1000 base pairs with its 5′UTR.  
 
In our validation set, at a Z-score of 2.0 when searched 100 
base pairs with 5′UTR, the sensitivity of the method is very 
high, since we identify 18 out of 20 hits (95% coverage) with 
only two false negatives Table 1 (see supplementary 
material). We therefore propose that a Z-score of 2.0 or more 
could be effective in not missing out the associated TFBS 
when searched for 100 base pairs with 5′UTR. In several 
instances, more than one transcription factor has been 
recorded for a stress gene of interest (for instance, COR15a 
has both DREB_AP2_EREBP and G_ABRE_bZIP (Figure 3a 
and Table 1 in supplementary material). The 60 stress genes 
that we have considered for validation are known to be 
upregulated during different types of stress - such as cold, 
dehydration, salinity etc. It is possible that, during a particular 
type of stress, any one of these transcription factors would 
selectively respond by binding upstream of the gene of 
interest. 
 
We also noticed that there are very few ‘validated’ TFBS 
which are mapped 100 base pairs upstream of stress genes. 

Therefore, we extended this validation to searches 1000 base 
pairs upstream of the gene and likewise a Z-score threshold of 
1.5 is appropriate for 1000 base pairs with 5′UTR (Figure 3b 
and Table 2 under supplementary material). 90% sensitivity is 
achieved in STIF, where 71 out of 78 hits could be correctly 
identified with Z-scores above the threshold. As with most 
other algorithms, we notice that the method is not highly 
specific and can generate false positives. The specificities for 
searches in the validation set, by searching 100 base pairs and 
1000 base pairs, is 57 and 18.6 (for Z-score threshold o1.5) 
and 54 and 20.4 (for Z-score threshold of 2.0), respectively. 
The difficulty in obtaining high specificities has been due to 
simple and short nucleotide patterns that describe some of the 
transcription factors like bHLH. Such TFs, would respond 
frequently and that too with very good match with HMM and 
are reflected as high scores. We have proposed an alternate 
normalized score for these frequently responding TFs. STIF 
employs Hidden Markov Models of binding site information 
of well-known plant transcription factors in stress. Microarray 
results of key stress upregulated genes in plants have shown 
that a large number of these genes are upregulated in response 
to a variety of genes generating redundancy in the dataset of 
stress upregulated plant genes. Further, the experimentally 
‘validated’ results also indicate that more than one 
transcription factor can turn ON the stress genes in our 
dataset. The scoring schemes and thresholds established 
should be useful for dealing with redundancy and occurrence 
of multiple true positives.  
 
We have built each HMM model and provided a stringent 
threshold for the scoring schemes. STIF algorithm, along with 
its database, is highly specific for plant stress cis-elements. 
However, this can be easily applied and extended to general 
systems after updating the HMM library and carefully 
standardizing the scoring scheme thresholds. The availability 
of such sensitive and specialized search algorithms can be 
very useful for addressing particular biological problems.  

 

 
Figure 3: (a) The validation set of 11 stress responsive genes when searched for 100 base pairs with its 5′UTR with 11 stress 
responsive genes. The total number of false positives obtained during the search is compared against the total number of false 
negatives for various Z-score thresholds applied for the statistical tests. (b) Same as Figure 3a but for a validation set of 29 stress 
genes where search for TFBS was performed 1000 base pairs with its 5′UTR. 
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Conclusion:  
Computational Transcription Factor Binding Site (TFBS) 
prediction is a mature domain in the field of Bioinformatics. 
Various algorithms, stand-alone software and web servers are 
available for the effective prediction of transcription start 
from sequence information using knowledge based and motif 
based methods [5, 18]. A wide array of TFBS prediction 
programs are available based on different biological contexts. 
For example a novel method for prokaryotic promoter 
prediction based on DNA stability that utilises structural 
properties of DNA is developed and analysed across different 
organisms [19], time-delay neural network based method 
(NNPP), is available specifically for the analysis of 
Drosophila melanogaster promoter regions [20]. An HMM 
based method based on markov chain optimization is 
available for the identification of hepatocyte nuclear factor 4-
alpha in human genome [21]. Due to availability of such 
generic as well as specific TFBS prediction algorithms 
specific algorithms for prediction of transcription factor 
binding sites, users are recommended to use multiple 
programs to obtain a consensus result. STIF algorithm 
explained in this manuscript which uses HMM models of 
known Abiotic stress factors will be useful for further analysis 
and understanding of stress gene regulation in the plant model 
system Arabidopsis thaliana. Since no bioinformatics tool 
provides a complete solution for the transcription factor 
identification problem, it is always better to analyse the 
promoter regions with more than one algorithm or program 
that based on the biological context.  
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Supplementary material 
 
P(S) = F * T → (1) 
where P(S) – Probability of consensus 
F – frequency (i.e. No: of particular nucleotide/ Total no in column) 
T – transition probability 
 
Log odd-score for consensus  
(S) = log P(S) – L (AT) log 0.375 + L(GC) log 0.125 
 

 
→ 

 
(2) 
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→ 

 
(3) 

TP = Hits acquired which is equal to experimental validation + greater than threshold value of the dataset.  
Total number of hits = Total number of hits acquired which is equal to experimental validation.  
 

 

 
→ 

 
(4) 

TP = True Positive 
 FN = False Negative (total hits occurring below threshold value) 
 

 

 
→ 

 
(5) 

 TP = True Positive 
 FP = False Positive (total hits occurring above threshold value) 
 

 

 
→ 

 
(6) 

Z – Z-score 
score – HMM score of the acquired hit 
mean – average of all possible sliding windows of upstream of stress gene 
std deviation – Standard Deviation of all possible sliding windows of upstream of stress gene. 
 
Normalization score  

 

 
 
 
 
→                (7) 
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Tables 
S. 
No 

Family 
name 

Sub-family Stress signal Reference (Stress 
signal) 

Name of the 
Cis-element 

Cis-element Reference 
(Cis-element) 

1 ABI3/ VP1  ABA Plant J. 2000; 
24(1):57-66 

distB ABRE GCCACTTGTC Plant J. 2000; 
24(1):57-66 

2 AP2/ 
EREBP 

EREBP-
ERF 

Cold, Drought The Plant Cell, 
1998; 10:1391–
1406. 

GCC-box GCCGCC The Plant Cell, 1998; 
10: 1391–1406. 

  DREB Cold, Drought Proc. Natl. Acad. 
Sci., 1997; 
94:1035-1040 

CRT/DRE (A/G)CCGAC Proc. Natl. Acad. 
Sci., 1997, 94:1035-
1040 

3 ARF  Auxin PNAS, 1999; 
96(10): 5844-9 

AuxREs TGTCTC PNAS, 1999; 96(10): 
5844-9 

4 BHLH/ 
myc 

 NACL, ABA, 
Drought 

The Plant Cell, 
2003; 15: 63–78 

N box CACG(G/A)C The Plant Cell, 2003; 
15: 63–78 

     G box CACGTG The Plant Cell, 2003; 
15: 1749–1770 

5 bZIP  ABA, Drought Current Opinion in 
Plant Biology 
2000; 3:217–223 

G box1 CCACGTGG The Plant 
Cell, 1992;  4: 
1309-1319 

     G box2 TGACG(T/C) The Plant Cell, 1992;  
4: 1309-1319 

     G/ABRE (C/T)ACGTGGC Journal Of Biological 
Chemistry, 2000;  
275(3): 1723–1730 

     C/ABRE CGCGTG Journal Of Biological 
Chemistry, 2000;  
275(3): 1723–1730 

6 HB  ABA, Drought Plant Molecular 
Biology, 1998; 37: 
377–384. 

 CAATNATTG Nat. Struct Biol, 
1999; 6:464-470 

7 HSF  Drought, Cold, 
Heavy-metal 
stress and 
oxidative stress 

Plant Physiol. 
1998; 117: 1135–
1141 
 

HSE TTCNNGAA 
GAANNTTC 

Nat. Struct Biol, 
1999; 6:464-470 

8 MYB  Dehydration, 
Wounding 

The Plant Cell, 
1993; 5:1529-1539 

 (T/C)AAC(G/T) G Genes & Dev. 
1990; 4: 2235-2241 

      CC(T/A)ACC Genetics, 1998; 149: 
479–490. 

      TAACTG Plant Journal,1996; 
10(6): 1145-1148 

      CC(TA)AACC Genetics, 1998; 149: 
479–490. 

      (C/T)AACN(A/G) The Plant Journal, 
2003; 33: 259–270 

9 NAC  Drought, high 
salinity and 
ABA 

The Plant Cell, 
2004; 16: 2481–
2498. 

 CATGTG Plant Mol Biol. 2002; 
50(2):237-48. 

10 WRKY  Biotic stress 
(pathogen 
attack) 
Abiotic 
Stress (wind, 
rain, hail) 

Plant Physiology, 
2002, 129: 661–
677 

W box (T)TGAC(C/T) Plant Molecular 
Biology 51: 21–37, 
2003. 

Table 1: Abiotic stress responsive transcription factor families. 
 
 

 


