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Abstract: 
One of the applications of the discriminant analysis on microarray data is to classify patient and normal samples based on 
gene expression values. The analysis is especially important in medical trials and diagnosis of cancer subtypes. The main 
contribution of this paper is to propose a simple Fisher-type discriminant method on gene selection in microarray data. In the 
new algorithm, we calculate a weight for each gene and use the weight values as an indicator to identify the subsets of 
relevant genes that categorize patient and normal samples. A l2 - l1 norm minimization method is implemented to the 
discriminant process to automatically compute the weights of all genes in the samples. The experiments on two microarray 
data sets have shown that the new algorithm can generate classification results as good as other classification methods, and 
effectively determine relevant genes for classification purpose. In this study, we demonstrate the gene selection’s ability and 
the computational effectiveness of the proposed algorithm. Experimental results are given to illustrate the usefulness of the 
proposed model. 
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Background: 
Microarray technologies for the analysis of biological 
samples provide information on a genomic scale. A major 
challenge in the context of microarray is the task of sample 
classification. One key problem in microarray data 
classification is that the number of features (gene 
expression levels) is extremely large compared to the 
number of observations (samples). Traditional pattern 
recognition methods may not handle this challenge 
properly. It is essential to identify which genes are relevant 
in the classification of disease so that better RNA-based 
diagnostic tests using laboratory techniques such as 
RT-PCR and better treatment can be developed. 
 
Researchers [3, 6] have also developed methods to identify 
optimal sets of genes which together provide good 
discrimination of classes. These algorithms are generally 
very computationally intensive. Recently, various machine 
learning methods for gene selection have been developed, 
for instance, relevance vector machine [11], Gaussian 
process models [5] and simple decision rules [12]. Fisher 
discriminant analysis and least squares support vector 
machines are used for sample classification [9]. Another 
approach is to use optimization algorithms in feature 
selection like sparse logistic regression [14] and modified 
Fisher optimization model [7]. 
 
The main contribution of this paper is to propose a simple 
Fisher-type discriminant method on gene selection in 
microarray data. In the new algorithm, we calculate a 

weight for each gene and use the weight values as an 
indicator to identify the subsets of relevant genes that 
categorize patient and normal samples in two-class 
classification problems. This is achieved by including the 
weight sparsity term in the Fisher objective function that is 
minimized in the discriminant process as described in 
equation 1 (see supplementary material). Each entry of u 
represents a weight for each gene. An efficient l2 - l1 norm 
minimization method is implemented [8] to the above 
discriminant model to automatically compute the weights 
of all genes in the samples. The experiments on two 
microarray datasets have shown that the new algorithm can 
effectively determine a small set of genes for the purpose of 
classification, and can generate classification results that 
are as good as the other methods. 
 
Results and discussion: 
Datasets 
In this paper, we apply the proposed method to two public 
microarray data sets, namely, colon cancer data set from [1] 
and the Leukaemia MIT AML/ALL data set from [10]. 
 
Colon cancer data 
In order to obtain more reliable results [15], we performed 
ten-fold cross validation in the experiments. The k-nearest 
neighbor’s method is used to determine a classifier that can 
be applied to predict the class of expression profiles of test 
samples. In the experiments, we tried several values of α. 
For each value of α, ten cross validation cases are generated 
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and therefore ten sets of weights of genes are obtained. 
Based on these ten sets of weights, the mean weights of 
genes can be calculated and thus genes are ranked 
according to the magnitude of their mean weights. We 
apply this ranking to the ten cross validation cases and 
evaluate how many numbers of important (relevant) genes 
to be selected such that the highest classification accuracy 
can be obtained. 
 
In the tests, we found out that the highest classification 
accuracy is achieved when α = 1609 among all tested 
values of α. In Figure 1a, we show the classification 
accuracy curve for 10-fold cross validation based on the 
ranking of average weights of genes when α = 1609. We 
note that the classification accuracy is still 82.4% even 
when the number of genes selected is more than 30, i.e., 
even if we include more genes in the classifier, the 
classification accuracy cannot be improved. We see from 
the figure 1 that when the number of genes selected is three, 
we can obtain the highest classification accuracy (86.7%). 
Among the ten cross validation cases, 5 out of 10 cases are 
100% correct. The type I and type II errors are 25.0% and 
7.5% respectively when α = 1609. 
 
In Table 1 (supplementary material), we list the mean 
weights, the mean values of cancer samples and the mean 
value of normal samples for the three selected genes. We 
observe that their sample mean discrepancies of two classes 
are quite large. This may also suggest why they are selected 
and why they are relevant to a normal/disease sample 
classification. In Figure 1b, we plot the value of equation (2) 
(see supplementary material) for each training sample j, 
where [x·j] is a vector containing those selected genes 
expression of the j-th sample and 3u  represents a 
projection vector which is formed by using the average 
weights of the three selected genes. 
 
Leukaemia MIT AML/ALL data 
We also performed ten-fold cross validation for the 
Leukaemia data set. We found out that the highest average 
classification accuracy is achieved when α = 10 among all 
tested values of α. We show in Figure 1c that the 
classification accuracy curve for 10-fold cross validation 
based on the ranking of average weights of genes. We also 
note that the classification accuracy is still 91.5% even 
when the number of genes selected is more than 120. 
Obviously, we obtain the highest classification accuracy 
(95.8%) when the number of genes selected is 39. It is 
interesting to note that 7 out of 10 cases are 100% correct. 
The type I and type II errors are 0.0% and 11.7% 
respectively. 
 
In Table 2 (supplementary material), we observe that their 
sample mean discrepancies of two classes are quite large. 
In Figure 1d, we plot the value of equation (3) (see 
supplementary material) for each training sample j, and it is 
clear from the figure 1 that the selected genes categorize 

patient and normal samples are well separated. 
 
Comparison of methods 
In this section, we compare the proposed method with other 
classification methods. 
 
Modified Fisher discriminant method 
In this subsection, we compare the performance of the 
proposed method with the modified Fisher discriminant 
method described in [7]. By using the colon cancer data set, 
we randomly selected half of the normal samples and 
patient samples as training samples and the rest of them as 
testing samples repeated 100 times. Here we fix α = 1069 
as used in the previous subsection, and compare the results 
of the two methods. The classification accuracy for testing 
samples is 85.0 ± 13.8% and only one gene (“Hsa.8147”) is 
selected. On the other hand, the classification accuracy for 
testing samples in [7] is 86.0 ± 5.7% and the number of 
genes selected is 29.9 ± 4.8%. We see that the proposed 
method is quite competitive with the modified Fisher 
discriminant method. 
 
Secondly, we perform the same experiment by using the 
Leukaemia data set. We randomly selected half of the 
normal samples and patient samples as training samples and 
the rest of them as testing samples. Therefore, we have 36 
training samples and 36 testing samples repeated 100 times. 
Here we fix α = 10 as used in the previous subsection. The 
classification accuracy for the test samples is 86.9 ± 14.7% 
and the number of genes selected is 58. No average result 
was given in [7] because large memory storage is required 
and the method is time- consuming. However, the proposed 
method can generate classification results efficiently. 
 
Sparse logistic regression 
In order to make a fair comparison with sparse logistic 
regression [4], we also perform a leave-one-out validation 
procedure to test the performance of the proposed method. 
We calculate the mean weights of genes in the procedure and 
evaluate how many numbers of genes to be selected such 
that the highest classification accuracy can be obtained. 
 
In the colon cancer data set, we find that when α is equal to 
1, the classification accuracy, cross-entropy and number of 
selected genes of the proposed method are 83.9%, 0.31 and 9 
respectively. It is better than those by the method 
(BLogReg) in [4], which gives lower classification accuracy 
(82.3%), higher cross-entropy (0.51) and more number of 
selected genes (11). In the Leukaemia MIT AML/ALL data 
set, we find that when α is equal to 0.1, the classification 
accuracy, cross-entropy and number of selected genes of the 
proposed method are 95.8%, 0.087 and 8. It is better than 
those by the method (BLogReg) in [4], which gives a lower 
classification accuracy (93.1%), a higher cross-entropy 
(0.259), and more selected genes (11). We remark that the 
lower cross-entropy is, the better the classification result is. 
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Figure 1: Classification accuracy and projection values. (a) classification accuracy (%) when α = 1609; (b) projection 
values when α = 1609; (c) classification accuracy (%) when α = 10; (d) projection values when α = 10 
 

PAM 
PAM is a tool for classifying normal/disease samples based 
on microarray data [2]. The idea behind nearest shrunken 
centroids [13] is to calculate each class centroid as a nearest 
centroid classifier. Each centroid is divided by the 
within-class standard deviation for each gene. This gives 
greater weight to genes whose expression is stable among 
samples in the same class. Soft thresholding is applied to the 
resulting normalized class centroids. If the normalized 
centroid is small, it is set to zero. This procedure is to reduce 
the number of genes that are used in the final classification 
model. The method is very efficient as it does not involve 
covariance matrix of genes, and the nearest shrunken 
centroids can be computed independently. 

 
In [2], it is mentioned that the discriminant weights in PAM 
are similar to those used in linear discriminant analysis. The 
main difference is that the calculation of distance between a 
given test observation and the class centroids where the 

pooled within-class variance/covariance matrix of the 
expression data is used. In PAM, it assumes that the 
covariance matrix is a diagonal matrix. In the proposed 
method, we use the covariance matrix in the formulation so 
that pairwise relations between any two genes are used in the 
calculation of discriminant weights. On the other hand, 
shrunken centroids are used in PAM. In the proposed 
method, we use a weight sparsity term 1|||| u  in the 
objective function to control the discriminant weights. 
Similar to PAM, a cross-validation procedure is used to find 
out a good balance (α) between equation (4) (see 
supplementary material) and 1|||| u . We remark that α is 
the regularization parameter to control the sparsity of u, i.e., 
very small values are set to zero. The corresponding gene 
does not contribute to the final classification. 
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Conclusion: 
In this paper, we study a new Fisher discriminant method for 
gene selection in microarray data and propose a l2 - l1 norm 
minimization method for finding the projection vector in 
discriminant process. The experiments on two microarray 
data sets have shown that the new algorithm can generate 
classification results in a competitive manner compared with 
other classification methods, and can effectively determine 
relevant genes. 
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Supplementary material      
       
Equations: 

1
2
2w ||||||z -u S|| uα+  → (1) 

Here Sw is the within-class scatter matrix of the samples in a micro-array data and z comes from the between-class 
scatter matrix, u is the projection vector and α is the regularization parameter to control the sparsity of u. 

][ .3 j
T xu  → (2) 

][ .39 j
T xu  → (3) 

2
2|||| zuSw −  → (4) 

 
Tables: 
Gene IDs 

iu  ic  in  

Hsa:8147 0.329 597 2303 
Hsa:1737 0.151 2578 3661 
Hsa:140 0.105 3870 2090 

Table 1: The information of the selected genes when α = 1609 (where, iu = mean weights, ic  = mean values of 

cancer samples and in  = mean value of normal samples). 
 
Gene IDs 

iu ×104 ic  in  

J03779_at  0.039 1817 3200 
J04164_at  0.036  1275 3369 
Y00787_s_at  0.034  7790 766 
M33680_at  0.031  2608 6351 
Y00433_at  0.021  14155 8117 
X69150_at  0.021  23913 22192 
X95404_at  0.021  12260 11486 
M27891_at  0.020  9120 185 
M19507_at  0.020  8605 443 
M84526_at  0.018  5125 -137 
X68277_at  0.017  4947 5392 
M13792_at  0.016  2062 5553 
HG1872−HT1907_at  0.016  2540 1419 
M20203_s_at  0.014  4510 110 
X537774_at  0.014  11041 11731 
X17093_at  0.013  1772 4177 
J05614_at  0.013  1518 2892 
U14970_at  0.012  17077 17501 
X56997_rna1_at  0.012  12716 12046 
M19045_f_at  0.012  6475 1736 
Table 2: The information of the selected genes when α = 10. 


