
Bioinformation by Biomedical Informatics Publishing Group                   open access 
www.bioinformation.net                        Hypothesis  
________________________________________________________________________ 

ISSN 0973-2063 
Bioinformation 2(5): 216-221 (2007)  

Bioinformation, an open access forum 
© 2007 Biomedical Informatics Publishing Group 

  

216

 

Being a binding site: Characterizing residue 
composition of binding sites on proteins 

 
 

Gábor Iván1, 2, Zoltán Szabadka1, 2, Vince Grolmusz1, 2, * 

 
1
Protein Information Technology Group, Department of Computer Science, Eötvös University, Pázmány P. stny. 1/C, H-1117 Budapest, 

Hungary; 
2
Uratim Ltd., Sóstói út 31/b, H-4400, Nyíregyháza, Hungary;  

Vince Grolmusz*
 
- E-mail: grolmusz@cs.elte.hu; * Corresponding author 

 
received October 25, 2007; accepted December 29, 2007; published online December 30, 2007 

 
Abstract: 
The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures 
today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the 
proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in 
the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first 
cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for 
frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) 
redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We 
have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, 
summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule 
mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-
ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of 
more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.  
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Background: 
The increasing accuracy and size of structural information 
stored in the Protein Data Bank [1] makes possible fully 
automated in silico studies involving thousands of protein-
ligand complexes and binding sites. The most important 
implication of such studies, were the structural 
classification of binding sites on protein-surfaces, 
applicable for the prediction and modeling of protein-
ligand interactions. Since most of the known biologically 
active compounds are ligands bound to proteins, this study 
is of considerable importance in the mathematical 
foundations of drug discovery and drug design. In the 
present work we apply data-mining techniques for the sets, 
formed from the residues at each binding sites present in 
the whole Protein Data Bank. Note that protein-ligand 
binding is a key step in enzymatic mechanisms, therefore 
the classification, characterization and the analysis of the 
binding sites is of special importance in understanding, 
predicting and designing enzymatic mechanisms. On the 
other hand, most drugs used today are small ligand 
molecules, and they act through binding to proteins or 
enzymes, and modifying their biological roles. Therefore, 
any large scale study of binding sites on proteins is of 
special importance in several fields. The rigorous cleaning 
and re-structuring procedure for the entries in the Protein 
Data Bank was reported in our earlier work [2]. We made 

use of the following techniques in the creation of that RS-
PDB database: Computing the InChI™ code [3, 4] applied a 
graph-isomorphism testing, transforming aromatic notation 
to Kekule-notation used a non-bipartite graph-matching 
algorithm [5], breadth-first-search graph traversals [6] were 
used throughout the work [2], depth-first search [6] was 
used in building the ligand molecules and identifying ring 
structures, Kd-trees [7] were applied for computing 
covalent bonds, and hashing [6] were utilized for the fast 
generation of protein-sequence IDs.  
 
Methodology:  
Identification of protein-ligand complexes  
It was a highly non-trivial problem to automatically 
identify protein-ligand complexes in the Protein Data Bank 
[1]. The HET label of atoms in the PDB files may denote 
metals or atoms of modified residues or even atoms in 
small molecules added during crystallization or covalently 
bound ions. Consequently, the HET atoms alone will not 
identify ligands. Small pieces of broken peptide-chains - 
erroneously - may also be seen to be ligands. Obviously, by 
careful human examination of the remark fields of the 
individual PDB entries, together with the thoughtful 
examination of journal publications where the solution of 
the protein-structure was first reported would solve these 
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problems, but they are definitely inadequate for automatic 
processing of the whole PDB, even by the most powerful 
textual data-mining techniques. 
 
The PDBsum pictorial data base [8] contains reliable 
structural information on ligands and binding sites, but, 
unfortunately, the automatic processing of the database is 
not possible. The sc-PDB database [9] was made by 
automatic processing of the whole PDB, using, among 
others, textual information in the remark and title fields of 
the entries in deciding if a structure is a complex or not. 
However, if a protein-ligand complex is not marked with 
the words “complex” or “ligand” in some remark field, then 
their method will not find it, as it was remarked [10]. In the 
PDBbind Database [11], by manual, human-involved 
search, binding affinities were compiled from hundreds of 
biochemical publications about protein-ligand complexes, 
from the PDB. We have chosen a much more reliable, fully 
automatic mathematical method for identifying complexes 
in [2]. We presented a new pre-processing algorithm that 
worked on the mmCIF (macromolecular Crystallographic 
Information File) format of the PDB, and used the 
International Chemical Identifier (InChITM) of the 
International Union of Pure and Applied Chemistry 
(IUPAC) [3, 4]. The result was a strictly structured, 
homogeneous database, called the RS-PDB database, 
adequate for processing diverse queries and serving 
intricate data-mining applications. We applied in our 
database a modification of the definition of the ligands used 
in the PDBbind Database [10]. The input of the algorithm 
is the mmCIF file of the PDB entry and the PDB Chemical 
Component Dictionary which contains the chemical 
structure of each monomer in the PDB. The output of the 
algorithm is the RS-PDB database (the abbreviation stands 
for Rich Structure PDB). One of the derived tables, called 
binding sites, contains the description of all the identified 
protein-ligand complexes from the whole PDB: this table 
consists of more than 1.9 million rows, and served as the 
basis of the further applications in the present work. 
 
Results and discussion:  
Dealing with data redundancy 
The RS-PDB database is prepared from the Protein Data 
Bank. In the PDB, important proteins are present in more 
than one copy: different PDB entries frequently contain the 
same protein sequence with different ligands, co-factors or 
with different resolution. For example, the protein chain of 
bovine trypsin is present in 165 different PDB entries, and 
three other protein sequences appear in more than 100 PDB 
entries each. In our study we cannot consider all the 
binding sites on the surface of all the proteins in the world, 
just those structures what are deposited in the PDB. The 
composition of the PDB is clearly biased to the direction of 
“important” proteins. Since popular or important structures 
were deposited with a large multiplicity, it is essential to 
count them only once if we aim to have correct quantitative 
results concerning the frequency of appearance of certain 
subsets of residues on binding sites. All the different 

(protein-surface area, ligand molecule) pairs were 
identified, and the redundancies were deleted from our 
database: if at the same area two different ligands were 
bound in two different PDB entries, then they were counted 
twice; if the same ligand appeared twice on the same area 
in two different PDB entries, they were counted only once. 
Note that this way we examined proteins even with very 
small differences (e.g., point-mutations) from the PDB as 
different entities; we did not delete them. The reason for 
that was that even point-mutations may change the residue-
composition of a binding site, and that is our main subject 
in this study.  
 
Binding sites and residues 
After the rigorous ligand identification and redundancy-
deleting procedure, we gained 19,581 pair-wise different 
binding sites. For each ligand L, identified in the RS-PDB 
database, a description of the residues in the binding site 
was generated by the following method: we went through 
the ligand atoms one-by-one and found those protein atoms 
which were closer to them than 1.05 times the sum of the 
van der Waals radii of the two atoms scanned. Note, that 
covalently bound ligands are already filtered out at this 
point, so all binding is non-covalent. After identifying the 
atoms in the protein, we identified the residues containing 
these atoms: for every binding site a subset of the 20 amino 
acids were created. If the same residue appeared more than 
once, we inserted it only once into the residue-set.  
 
Our goal was to analyze the properties of these ligand-
binding residue-sets by finding hidden association rules 
[12]. The frequent item-sets were collected using the 
apriori algorithm [12]. The frequencies of the individual 
amino acids (i.e., the 1-element subsets) are given in Table 
1 (supplementary material). The numbers in Table 1 
(supplementary material) give the fractions of binding sites 
where the amino acid in question appears. For example, 
GLY is present in 62.56% of all binding sites (that is, 
0.6256 fraction of the all binding sites).  
 
Association rules 
From the observations in Table 1 (see supplementary 
material), the distribution of the amino acids in the binding 
sites is far from being uniform. We would like to reveal 
hidden rules of the residue-composition of binding sites of 
the protein-ligand complexes. We are interested in 
implication-like rules such as: (ALA, LEU) → (ILE, VAL), 
that is, if a binding site contains amino acids leucine and 
alanine, it will “likely” contain also valine and isoleucine. 
Here the word “likely” needs further clarification: in our 
study we have found, that 14.68% of all binding sites 
contain all the four residues leucine, alanine, valine and 
isoleucine. Moreover, from all the binding sites, containing 
both alanine and leucine, 41.69% contain also isoleucine 
and valine. These relations are called association rules in 
data mining [12], and are believed to describe hidden rules 
or implications in large enough data sets [13, 14, 15].  
We give here the terminology and the definitions needed to 
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describe the results, following the data mining terminology 
[12]. Let I denote a finite set, its elements are called items, 
(in our study the items are residues). Let T denote a set, 
consisting of several subsets of set I, where multiplicities 
are also allowed: subsets of I can be contained in T more 
than once. The elements of T (which are subsets of I in the 
same time) are called transactions. Note, that in our present 
study the transactions are the sets of amino acids in binding 
sites. Let U and V be two disjoint subsets of I. Association 
rule U → V, has support α, if the union U ∪ V is a subset 
of exactly the α-fraction of all transactions (or with the 
probability-notation PrX (U ∪ V ⊆  X)= α); it has 
confidence β, if among the transactions, containing the 
whole set U , a β fraction contains also set V (or, with 
conditional probabilities: PrX (V ⊆  X │ U ⊆  X)= β). Rule 
U → V has lift γ, if  γ equals to the confidence, divided by 
the probability of containing V, (or, in other words,  γ =  
PrX (V ⊆ X│U ⊆ X)/Pr(V ⊆ X) = Pr(U ∪ V ⊆ X)/(Pr(U ⊆ 
X)Pr(V ⊆ X)). The support of an association rule 
characterizes its frequency, the confidence and the lift its 
interest. In our example association rule (ALA, LEU) → 
(ILE, VAL), the support is 14.68%, the confidence is 
41.69%, its lift is 1.53. The meaning of the lift can be 
explained as follows: the support of the set {ALA, LEU} is 
0.3520, the support of set {ILE, VAL} is 0.2732, the 
support of {ALA, LEU, ILE, VAL} is 0.1468; this is 1.53-
times higher than the value 0.3520 · 0.2732= 0.09616. This 
example shows that the presence of leucine and alanine 
1.53 times increase the probability of the presence of valine 
and isoleucine at a binding site.  
 
Association rules X → Y , where Y is a very frequently 
appearing residue-subset, are not interesting generally: 
Since Y is very frequent, it will appear in a great variety of 
different residue-subsets, and the X → Y rules, with  
different X’s will be valid, but, however, they mean 
nothing else, that Y is quite frequent. In data mining, this 
situation is explained as follows: Suppose that the 
transactions are consumer baskets in a supermarket. Since 
the great majority of the consumers buy bread, there will be 
lots of association rules of the form X → (bread), and they 
be valid in the sense that they will have large support and 
confidence, but they will not generally be interesting and 

will not generally uncover new facts. On the other hand, if 
Y is an infrequently appearing set, then the support and the 
confidence generally will not reach the thresholds to be 
included in our results. For example, Y = GLY appears 
very frequently, while Y = CYS or Y = TRP appears very 
rarely. Association rules of unusually high and unusually 
low lifts and rules of form X → Y with high confidence 
and not-too-high support for Y are of particular interest 
[12]. Our figures here visualize such remarkable data.  
 
With the parameters of Figure 1, only the arginine is 
present as the head of 8 arrows of lift less than 1. This may 
show that arginine, the fourth most frequent residue in 
binding sites (Table 1 in supplementary material) relatively 
infrequently appears together with some residue-sets, but 
its frequency is high enough to give larger than 0.5 
confidence. It is interesting that only arginine has this 
property. The star with a leucine-center may be due that 
leucine is the second most frequent residue in binding sites 
after glycine (Table 1 in supplementary material), and rules 
pointing to glycine were deleted. It is remarkable, however, 
that the alanine-isoleucine pair is very frequently contained 
at the base of those arrows in the star. The higher than 1.8 
lifts in the lower half of Figure 1 shows a common 
property: all sets at beginning of the arrows are of low 
support, and at the end of the arrows are of high support 
(see Figure 2 for legends). The data show that the 
frequency of the rarely appearing sets there will be 
increased relatively strongly if they appear together with 
the sets at the tip of the arrows.  
 
On Figure 2 those rules are listed, which has high lift, high 
support and high confidence, but the X → GLY rules are 
deleted for clarity. Note, that all stars with in-degree larger 
than 3 contains GLY, which is not really surprising, by the 
data of Table 1 (supplementary material). However, the star 
of [GLY] + [THR] in the upper right corner has two 
remarkable properties: (i) alanine (the sixth most frequent 
residue) is present in almost all bases, and (ii) threonine 
(the tenth most frequent residue) appears with GLY in the 
centre (iii) bases contain three or four residues. This result 
shows that from a very large data set one can derive 
surprising facts by setting the thresholds properly.  
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Figure 1: Association rules-Set 1: Figure 1 was created by deleting all X → GLY association rules for clarity, and including 
those rules which satisfy that their supports are at least 7.15% and their confidences are at least 0.5 and, moreover, at least 
one of the following conditions hold: (a) their confidences are at least 0.8 or (b) their lifts are at least 1.8 or (c) their lifts are 
at most 0.97 or (d) their supports are at least 24%. The color and width of the arrows corresponds to the lift, the color of 
residue-sets corresponds to the support, as shown on the figure legend. Four areas are identifiable on the figure: in the lower 
half the rules of large lifts are shown; in the upper left corner the rules of high confidences (with one exception), in the upper 
middle part the lower than 0.97 lift rules, and in the upper right corner the high support rules are shown. Note that these 
rules form almost disjoint classes 
 

                     
Figure 2: Association rules-Set 2: The figure was created by deleting all X→GLY association rules for clarity, and including 
only those rules which satisfy that their support is at least 7.15% and their confidence is at least 0.55 and their lift is at least 
1.7
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Conclusion: 
We cleaned the largest depository of the three-dimensional 
structural protein information database, the Protein Data 
Bank [1, 2], and also identified a non-redundant set of more 
than 19,500 ligand binding sites in the data. We collected 
the residues from the binding-site collection, and analyzed 
the residue-sets by association-rule mining. Hundreds of 
thousands of association rules can be identified in such a 
large dataset. It is a challenging task to reduce the number 
of the association rules by selecting the relevant ones. We 
applied filtering according to support, confidence and lift, 
connected by Boolean relations in different ways in Figure 
1 and Figure 2. This way we gained easily readable 
association rule sets. The PDB is the result of the work of 
tens of thousands scientists (biochemists, physicists, 
crystallographers, mathematicians) in about forty years. 
The more than 19,500 binding sites identified by us are 
clearly contains information of enormous biological value, 
hard to understand and interpret. The data mining 
techniques developed in the last decade make possible to 
gain knowledge from large and hardly manageable datasets. 
Our results here demonstrate this fact. Most probably, 
every association rule on our figures has non-trivial 
biochemical meaning. The explanation even of these very 
restricted set of rules are out of the scope of the present 
work. We just would like to mention just one interesting 
relation from the figures here. On Figure 1 there is a star 
with an ARG center, containing lower-than-1 lift rules. The 
confidences are just above the threshold 0.5 there, meaning 
that, for example, if a binding site contains PHE and VAL, 
then it will also contain ARG in 51% in all cases. However, 
the low lift (0.954) means that the (PHE, VAL, ARG) triad 
is present with less frequency than it can be predicted from 
the individual (marginal) probabilities of (PHE, VAL) and 
ARG. The explanation of that fact can be that the pair 
(PHE, VAL) is over-represented (given by lift) together 
with other residues, for example with LEU, ALA, and TYR 
on one arrow on the upper left star on Figure 1. By this 
avenue, we believe, one can create such large, only 
machine-handle-able rule-sets, that can evaluate and predict 
protein-ligand binding by taking into account several points 

in parallel. We think that our present work is a step in this 
direction, and can open this line of research.  
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Supplementary material 
 
Residue  Frequency  Residue  Frequency  Residue  Frequency  
GLY 0.6256  LEU  0.5823  TYR  0.5568 
ARG 0.5386  SER 0.5227  ALA 0.5184 
PHE 0.5101  VAL  0.5016  ASP  0.4817 
THR 0.4748 ILE  0.4660  ASN 0.4336 
HIS 0.4254  LYS  0.4221  GLU  0.4110 
TRP 0.3356  GLN  0.3111  PRO  0.2859 
MET 0.2830  CYS 0.2094   
Table 1: The frequencies of the 1-element residue-sets in the binding sites. The numbers give the fractions of binding 
sites where the amino acid in question appears. For example, GLY is present in 62.56% of all binding sites (that is, 
0.6256 fraction of the all binding sites) 
 


